Finite-Valued Streaming String Transducers

Sarah Winter IRIF, Université Paris Cité, France

based on joint work with Emmanuel Filiot, Ismaël Jecker, Christof Löding, Anca Muscholl, Gabriele Puppis

August 22 @ RAMiCS 2024, Prague, Czech Republic

Finite Automata and Languages

Finite automata define a very robust class of languages

- many equivalent automaton models: deterministic, nondeterministic, 2-way, ε-transitions
- various other representations: regular expressions, MSO logic, monoids
- excellent closure-properties: Boolean operations, projection, homomorphisms, reversal, ...
- many interesting problems decidable: equivalence, emptiness, universality, ...

(Word-)Transductions

A (word-)transduction is a relation $R \subseteq \Sigma^* \times \Sigma^*$ between words.

Examples.

abaabba \mapsto abbaaba
abaabba \mapsto abbaabaabbaaba
$abaabba\mapsto aaaabbb$
$abaabba\mapsto bbb$
$abb \mapsto \varepsilon, a, ab, abb$
$abb \mapsto abb, bba, bab$
$abb \mapsto abb, abbabb, abbabbabb, \ldots$

(Word-)Transductions

A (word-)transduction is a relation $R \subseteq \Sigma^* \times \Sigma^*$ between words.

Examples.

abaabba \mapsto abbaaba
abaabba \mapsto abbaabaabbaaba
$abaabba\mapsto aaaabbb$
$abaabba \mapsto bbb$
$abb \mapsto \varepsilon, a, ab, abb$
$abb \mapsto abb, bba, bab$
$abb \mapsto abb, abbabb, abbabbabb,$

Transductions are defined by (finite) transducers (automata with output). Unlike for automata, the defined classes of transductions vary by transducer model.

Transducer Models

Finite Transducers

A **finite transducer** (**FT**) is a finite automaton that additionally has output words on its transitions.

Example. Deterministic FT.

Finite Transducers

A **finite transducer** (**FT**) is a finite automaton that additionally has output words on its transitions.

Example. Nondeterministic FT.

"non-empty suffix"

Properties of Finite Transducers

- DFTs define functions, NFTs can define relations.
- It is decidable whether an NFT defines a function (Schützenberger 1975).
- Equivalence is decidable for DFTs (Blattner, Head 1979).
- Equivalence is undecidable for NFTs (Fischer, Rosenberg 1968).
- Fewer closure-properties than finite automata, e.g.,
 FTs are not closed under intersection.

Properties of Finite Transducers

- DFTs define functions, NFTs can define relations.
- It is decidable whether an NFT defines a function (Schützenberger 1975).
- Equivalence is decidable for DFTs (Blattner, Head 1979).
- Equivalence is undecidable for NFTs (Fischer, Rosenberg 1968).
- Fewer closure-properties than finite automata, e.g.,
 FTs are not closed under intersection.

Drawback

- FTs are limited in their expressiveness, for example "copy", "reverse", "sort", ... are not definable.
- Is there a more expressive model?

2-way Finite Transducers

A **2-way finite transducer** (**2-FT**) can move left and right on its input tape and produce output from left to right.

Example. Deterministic 2-FT. " Copy and reverse" $a|a, \triangleleft$ ala,D 515,0 518,0 2-0FT: -12,0 input: Labaa 4 antput: abaa aaba Labaa -90 a 9

2-way Finite Transducers

A **2-way finite transducer** (**2-FT**) can move left and right on its input tape and produce output from left to right.

Example. Nondeterministic 2-FT.

 α iterate" $u \mapsto \int u^n | n \ge 13$

MSO Transductions

A monadic second order logic transduction (MSOT) takes a fixed number of copies of the universe of the input structure, and defines the relations of the output structure by MSO formulas.

Example. Deterministic 2-FT. " copy and reverse"

$$-a - b - a - s - a$$

 $\begin{aligned} & \Psi_{s}^{1,1}(x,y) &:= S(x,y) \\ & \Psi_{s}^{1,2}(x,y) &:= x = y \land (ast(x)) \\ & \Psi_{s}^{2,2}(x,y) &:= S(y,x) \\ & \Psi_{s}^{2,1}(x,y) &:= \bot \end{aligned}$

 $\begin{aligned} & \mathcal{Y}_{\text{ini+}}^{2}(\boldsymbol{x}) \coloneqq \text{ini+}(\boldsymbol{x}), \quad \mathcal{Y}_{\text{ini+}}^{2}(\boldsymbol{x}) \coloneqq \boldsymbol{\perp} \\ & \mathcal{Y}_{\sigma}^{2}(\boldsymbol{x}) \coloneqq \boldsymbol{\sigma}(\boldsymbol{x}) \quad , \quad \boldsymbol{\sigma} \in \boldsymbol{\Sigma} \\ & \mathcal{Y}_{\sigma}^{2}(\boldsymbol{x}) \coloneqq \boldsymbol{\sigma}(\boldsymbol{x}) \quad ; \quad \boldsymbol{\sigma}(\boldsymbol{x}) \quad , \quad \boldsymbol{\sigma} \in \boldsymbol{\Sigma} \end{aligned}$

Overview: MSOT and 2-FT

Theorem (Engelfriet, Hogeboom 1988).

DMSOT and 2-DFT have the same expressive power. The classes of transductions defined by NMSOT and 2-NFT differ.

An Equivalent 1-way Model?

- The connection between MSO logic and finite automata is a cornerstone of the analysis of logical specifications.
- We have such a connection between MSO transductions and 2-way finite transducers.
- Unfortunately, reasoning with 2-way models can be quite technical and involved.
- Is there a 1-way model that expresses MSO definable transductions?
- Also, implementation-wise a 1-way model might be preferred.

Streaming String Transducers

A **Streaming String Transducer (SST)** is a finite automaton with a set \mathfrak{X} of output registers. Transitions are additionally annotated with register updates, one for each register $X \in \mathfrak{X}$, of the form

 $X := w_1 X_1 w_2 \cdots w_n X_n w_{n+1}$ with $X_i \in \mathfrak{X}$ and $w_i \in \Sigma^*$

Streaming String Transducers

A **Streaming String Transducer (SST)** is a finite automaton with a set \mathfrak{X} of output registers. Transitions are additionally annotated with register updates, one for each register $X \in \mathfrak{X}$, of the form

 $X := w_1 X_1 w_2 \cdots w_n X_n w_{n+1}$ with $X_i \in \mathcal{X}$ and $w_i \in \Sigma^*$

Register updates are required to be **copyless**: each register appears at most once in the right-hand side of the updates in a transition.

Example: Deterministic SST

Example: Nondeterministic SST

" rotate"

Overview: Adding SSTs

Theorem (Alur, Černy 2010; Alur, Deshmukh 2011). DMSOT and DSST have the same expressive power. So have NMSOT and NSST.

Languages vs. Transductions

Inbetween Functions and Relations

- Equivalence is decidable for 2-DFTs, DMSOTs, and DSSTs, while it is undecidable for their nondeterministic counter-parts.
- For NFTs, there is a robust subclass, namely NFTs defining finite-valued relations.
- Does this robustness extend to finite-valued relations defined by 2-NFTs, NMSOTs, NSSTs?

Finite-valued Transducers

Finite-valued Transducers

A transduction T is called **finite-valued** if there is a bound k such that T associates at most k outputs to each input.

Example.

Properties of Finite-valued FTs

A transduction T is called **finite-valued** if there is a bound k such that T associates at most k outputs to each input.

- Equivalence for finite-valued NFT is decidable (Culik, Karhumäki 1986).
- ► It is decidable if a given NFT is finite-valued (Weber 1990).
- Every k-valued NFT can be effectively decomposed into a union of k single-valued NFT (Weber 1993).

Properties of Finite-valued FTs

A transduction T is called **finite-valued** if there is a bound k such that T associates at most k outputs to each input.

- Equivalence for finite-valued NFT is decidable (Culik, Karhumäki 1986).
- It is decidable if a given NFT is finite-valued (Weber 1990).
- Every k-valued NFT can be effectively decomposed into a union of k single-valued NFT (Weber 1993).
- Decomposition allows for a new test for equivalence.

What About Finite-valued SSTs?

NSST were introduced by (Alur, Deshmukh 2011). The authors raised the following questions:

- Is finite-valuedness of NSST decidable?
- Is equivalence for NSST decidable?
- Can every finite-valued NSST be decomposed into a finite union of DSST?

What About Finite-valued SSTs?

NSST were introduced by (Alur, Deshmukh 2011). The authors raised the following questions:

- Is finite-valuedness of NSST decidable?
- Is equivalence for NSST decidable?
- Can every finite-valued NSST be decomposed into a finite union of DSST?

We give positive answers to all these questions and consequently obtain also results about finite-valued 2-NFTs and NMSOTs.

Results

Finite-valuedness

Theorem (FJLMPW 2024). It is decidable (PSPACE-complete) whether a nondeterministic SST is finite-valued.

Results

Finite-valuedness

Theorem (FJLMPW 2024). It is decidable (PSPACE-complete) whether a nondeterministic SST is finite-valued.

Decomposition

Theorem (FJLMPW 2024). Every *k*-valued SST can be effectively decomposed into a union of *k* deterministic SST.

Consequences of Decomposition Result

Together with a result of (Alur, Deshmukh 2011), we obtain:

Corollary. Equivalence for *k*-valued **SST** is decidable in elementary time.

Decidability was already known (Muscholl, Puppis 2019), but without an elementary upper complexity bound.

Consequences of Decomposition Result

Together with a result of (Alur, Deshmukh 2011), we obtain:

Corollary. Equivalence for *k*-valued **SST** is decidable in elementary time.

Decidability was already known (Muscholl, Puppis 2019), but without an elementary upper complexity bound.

Corollary. For finite-valued relations, the classes of 2-NFT, NSST, and NMSOT coincide.

The decomposition entails a translation from finite-valued NSST to 2-NFT. The other direction was already known (Alur, Černy 2011).

Overview: Adding Finite-valued Relations

Deciding Finite-valuedness

Characterization for Finite-Valuedness

Lemma. An SST is finite-valued iff it does not contain a "simply divergent W-pattern".

Differences between FTs and SSTs

Finite-valuedness is characterized for FTs and SSTs via "divergent W-patterns". Main ingredients to establish the characterization are

- a pumping technique for loops, and
- comparing the "delay" between runs on the same input.

Differences between FTs and SSTs

Finite-valuedness is characterized for FTs and SSTs via "divergent W-patterns". Main ingredients to establish the characterization are

- a pumping technique for loops, and
- comparing the "delay" between runs on the same input.

FTs build their output from left-to-right, while SSTs do not have this restriction.

Example.

$$palbb \qquad palbbX, bXb, Xbb$$

 $NFT \rightarrow p \qquad sst \rightarrow p \rightarrow X$

Differences between FTs and SSTs

Finite-valuedness is characterized for FTs and SSTs via "divergent W-patterns". Main ingredients to establish the characterization are

- a pumping technique for loops, and
- comparing the "delay" between runs on the same input.

FTs build their output from left-to-right, while SSTs do not have this restriction.

This makes it necessary to develop a new pumping technique and a new notion of "delay". A suitable notion of "delay" was introduced in (Filiot, Jecker, Löding, W. 2023).

Skeleton-idempotent Loops

The **skeleton** of an update $\alpha : \mathcal{X} \to (\Sigma \uplus \mathcal{X})^*$ is the update $\hat{\alpha} : \mathcal{X} \to \mathcal{X}^*$ obtained by removing all letters from Σ .

Skeletons and their composition form a finite monoid.

A **skeleton-idempotent loop** is a factor of a run that starts and ends in the same state and induces a skeleton-idempotent update (that is an update α so that α and $\alpha \cdot \alpha$ have the same skeleton).

Example.

$$\alpha : \begin{array}{c} X_1 := \alpha X_1 \\ X_2 := \alpha \end{array} \qquad \begin{array}{c} X_1 := X_1 \\ X_2 := \varepsilon \end{array} \qquad \begin{array}{c} X_1 := X_1 \\ X_2 := \varepsilon \end{array}$$

$$\alpha : \alpha := \alpha \cdot \alpha (X_1) \cdot \beta \cdot \alpha (X_2) \cdot c = \alpha \cdot \alpha \cdot \lambda \cdot \beta \cdot \lambda_2 \cdot c \cdot b \cdot \alpha \cdot \lambda_2 := \alpha$$

Skeleton-idempotent Loops

Example.

$$\begin{array}{c} \chi_1 := \alpha \chi_1 \beta \chi_2 \\ \chi_2 := \alpha \end{array} \qquad \begin{array}{c} \chi_1 := \chi_1 \chi_2 \\ \chi_2 := \epsilon \end{array}$$

$$\alpha : \alpha := \alpha \alpha(X_1) \beta \alpha(X_2) c = \alpha \alpha X_1 \beta X_2 c \beta \alpha c$$

 $X_2 := \alpha$

$$x^3$$
: $X_1 := a a a X_1 b X_2 c b a c b a c $X_2 := a$$

Let α be a skeleton-idempotent update. For every $X \in \mathcal{X}$ there exist two words $u, v \in \Sigma^*$ such that

 $\alpha^n(X) = u^{n-1}\alpha(X)v^{n-1}.$

Let α be a skeleton-idempotent update. For every $X \in \mathcal{X}$ there exist two words $u, v \in \Sigma^*$ such that

 $\alpha^n(X) = u^{n-1}\alpha(X)v^{n-1}.$

Example.

$$\alpha : \begin{array}{l} X_1 := \alpha X_1 b X_2 c \\ X_2 := \alpha \end{array}$$

$$\alpha^{n}(\chi_{1}) = (\alpha)^{n-1} \alpha(\chi_{1}) (b\alpha c)^{n-1}$$
$$\alpha^{n}(\chi_{2}) = \alpha(\chi_{2})$$

Let α be a skeleton-idempotent update. For every $X \in \mathcal{X}$ there exist two words $u, v \in \Sigma^*$ such that

 $\alpha^n(X) = u^{n-1}\alpha(X)v^{n-1}.$

Example.

$$\alpha : \begin{array}{l} X_1 := \alpha X_1 b X_2 c \\ X_2 := \alpha \end{array}$$

$$\alpha^{n}(\chi_{1}) = (\alpha)^{n-7} \alpha(\chi_{1}) (b\alpha c)^{n-7}$$
$$\alpha^{n}(\chi_{2}) = \alpha(\chi_{2})$$

A Ramsey-type argument shows that in a long enough run a sequence of (pairwise disjoint) skeleton-idempotent loops occur.

Given a run with *m* such loops, pumping the *i*-th loop n_i times yields output of the form

 $w_0(u_1)^{k_1-1}w_1(u_2)^{k_2-1}\cdots w_{r-1}(u_r)^{k_r-1}w_r$

where *r* is bounded by $2m|\mathcal{X}|$ and $k_1, \ldots, k_1 \in \{n_1, \ldots, n_m\}$.

Given a run with *m* such loops, pumping the *i*-th loop n_i times yields output of the form

$$w_0(u_1)^{k_1-1}w_1(u_2)^{k_2-1}\cdots w_{r-1}(u_r)^{k_r-1}w_r$$

where *r* is bounded by $2m|\mathcal{X}|$ and $k_1, \ldots, k_1 \in \{n_1, \ldots, n_m\}$.

$$(\underbrace{a}_{X_{1}}^{n, -7} \underbrace{bac}_{X_{1}}^{n, -1} \underbrace{a}_{X_{1}}^{n, -1} \underbrace{a}_{X_{2}}^{n, -1} \underbrace{a}_{X_{2}}^{n, -1} \underbrace{a}_{X_{2}}^{n, -1} \underbrace{a}_{X_{2}}^{n, -1} \underbrace{b}_{X_{2}}^{n, -1} \underbrace{b}$$

Goal: Use the "simply divergent W-pattern" to create a set of runs (via pumping) with the same input but different outputs.

$$q_{0} \xrightarrow{s} q_{1} \xrightarrow{uv}_{\omega} q_{1} \xrightarrow{uv}_{\omega} q_{1} \xrightarrow{uv}_{\omega} q_{1} \xrightarrow{uv}_{\omega} q_{1} \xrightarrow{uv}_{\omega} q_{2} \xrightarrow{uv}_{\omega} q_{2} \xrightarrow{t} q_{3}$$

$$q_{0} \xrightarrow{s} q_{1} \xrightarrow{uv}_{\omega} q_{1} \xrightarrow{uv}_{\omega} q_{2} \xrightarrow{uv}_{\omega} q_{2} \xrightarrow{uv}_{\omega} q_{2} \xrightarrow{t} q_{3}$$

Word Inequalities

A **word inequality with parameters** is an inequality of two words in which repetitions of some subwords are parameterized by variables.

A **solution** is an assignment of numbers to the variables such that the resulting words are different.

Word Inequalities

A **word inequality with parameters** is an inequality of two words in which repetitions of some subwords are parameterized by variables.

A **solution** is an assignment of numbers to the variables such that the resulting words are different.

Example.

• $(ab)^{x}aa(b)^{x}abba \neq ababaa(bba)^{x}$ (one parameter)

The only non-solution is x = 2: *ababaabbabba* = *ababaabbabba*

Word Inequalities

A **word inequality with parameters** is an inequality of two words in which repetitions of some subwords are parameterized by variables.

A **solution** is an assignment of numbers to the variables such that the resulting words are different.

Example.

► $(ab)^{x}aa(b)^{x}abba \neq ababaa(bba)^{x}$ (one parameter)

```
The only non-solution is x = 2:

ababaabbabba =

ababaabbabba
```

► $b(ab)^{y}ab(b)^{x} \neq (ba)^{x}ba(b)^{y}b$ (two parameters)

Non-solutions are all choices such that $\mathbf{x} = \mathbf{y}$, Solutions are all choices such that $\mathbf{x} \neq \mathbf{y}$.

Saarela and Consequences

Theorem (Saarela 2015). A word inequality with a single parameter x either has no solutions or the set of solutions is co-finite (the number of non-solutions is bounded by the number of occurences of x in the inequality).

Saarela and Consequences

Theorem (Saarela 2015). A word inequality with a single parameter x either has no solutions or the set of solutions is co-finite (the number of non-solutions is bounded by the number of occurences of x in the inequality).

Consequences

- We show properties of the solution space for word inequalities with multiple parameters.
- We show that if each inequality in a finite system of inequalities is solvable, then the system is solvable.

"simply divergent W-pattern" ⇒ not finite-valued

Pattern yields two runs whose outputs have the right format for a word inequality with parameters x, y, z.

- Since there is one solution (x = 1, y = 1, z = 1), the set of solutions is infinite (and obeys some properties).
- We show that (x = i − 1, y = j − i − 1, z = M − j) for all i < j (with i, j from a specific set) for some arbitrarily large M is a solution.</p>

"simply divergent W-pattern" ⇒ not finite-valued

"simply divergent W-pattern" ⇒ not finite-valued

▶ We now parameterize each v^{n_1} in $(uv^{n_1}w)^{i-1}$, each v^{n_3} in $(uv^{n_3}w)^{j-i-1}$, and each v^{n_5} in $(uv^{n_5}w)^{M-j}$.

- Iterating through all *i* < *j* forms a finite system of word inequalities. It has a solution as each inequality has a solution.
- Each inequality is generated by a run with the same input. Hence, the SST is not finite-valued.

Summary

- We completed the picture for finite-valued SSTs concerning their expressive power and answered key decidability questions.
- Future work: Complexities are likely not optimal.

