
Finite-Valued Streaming String Transducers

Sarah Winter
IRIF, Université Paris Cité, France

based on joint work with
Emmanuel Filiot, Ismaël Jecker, Christof Löding, Anca Muscholl,

Gabriele Puppis

August 22 @ RAMiCS 2024, Prague, Czech Republic

Finite Automata and Languages
Finite automata define a very robust class of languages
▶ many equivalent automaton models: deterministic,

nondeterministic, 2-way, ε-transitions
▶ various other representations: regular expressions, MSO logic,

monoids
▶ excellent closure-properties: Boolean operations, projection,

homomorphisms, reversal, . . .
▶ many interesting problems decidable: equivalence, emptiness,

universality, . . .

2 / 36

(Word-)Transductions
A (word-)transduction is a relation R ⊆ Σ∗ × Σ∗ between words.

Examples.
reverse abaabba 7→ abbaaba
copy abaabba 7→ abbaabaabbaaba
sort abaabba 7→ aaaabbb
delete as abaabba 7→ bbb
infix abb 7→ ε, a, ab, abb
rotate abb 7→ abb, bba, bab
iterate abb 7→ abb, abbabb, abbabbabb, . . .

Transductions are defined by (finite) transducers (automata with
output). Unlike for automata, the defined classes of transductions
vary by transducer model.

3 / 36

(Word-)Transductions
A (word-)transduction is a relation R ⊆ Σ∗ × Σ∗ between words.

Examples.
reverse abaabba 7→ abbaaba
copy abaabba 7→ abbaabaabbaaba
sort abaabba 7→ aaaabbb
delete as abaabba 7→ bbb
infix abb 7→ ε, a, ab, abb
rotate abb 7→ abb, bba, bab
iterate abb 7→ abb, abbabb, abbabbabb, . . .

Transductions are defined by (finite) transducers (automata with
output). Unlike for automata, the defined classes of transductions
vary by transducer model.

3 / 36

Transducer Models

Finite Transducers
A finite transducer (FT) is a finite automaton that additionally has
output words on its transitions.

Example. Deterministic FT.

5 / 36

Finite Transducers
A finite transducer (FT) is a finite automaton that additionally has
output words on its transitions.

Example. Nondeterministic FT.

5 / 36

Properties of Finite Transducers
▶ DFTs define functions, NFTs can define relations.
▶ It is decidable whether an NFT defines a function

(Schützenberger 1975).
▶ Equivalence is decidable for DFTs (Blattner, Head 1979).
▶ Equivalence is undecidable for NFTs

(Fischer, Rosenberg 1968).
▶ Fewer closure-properties than finite automata, e.g.,

FTs are not closed under intersection.

Drawback
▶ FTs are limited in their expressiveness, for example “copy”,

“reverse”, “sort”, . . . are not definable.
▶ Is there a more expressive model?

6 / 36

Properties of Finite Transducers
▶ DFTs define functions, NFTs can define relations.
▶ It is decidable whether an NFT defines a function

(Schützenberger 1975).
▶ Equivalence is decidable for DFTs (Blattner, Head 1979).
▶ Equivalence is undecidable for NFTs

(Fischer, Rosenberg 1968).
▶ Fewer closure-properties than finite automata, e.g.,

FTs are not closed under intersection.

Drawback
▶ FTs are limited in their expressiveness, for example “copy”,

“reverse”, “sort”, . . . are not definable.
▶ Is there a more expressive model?

6 / 36

2-way Finite Transducers
A 2-way finite transducer (2-FT) can move left and right on its
input tape and produce output from left to right.

Example. Deterministic 2-FT.

7 / 36

2-way Finite Transducers
A 2-way finite transducer (2-FT) can move left and right on its
input tape and produce output from left to right.

Example. Nondeterministic 2-FT.

7 / 36

MSO Transductions
A monadic second order logic transduction (MSOT) takes a fixed
number of copies of the universe of the input structure, and defines
the relations of the output structure by MSO formulas.

Example. Deterministic 2-FT.

8 / 36

Overview: MSOT and 2-FT

Theorem (Engelfriet, Hogeboom 1988).
DMSOT and 2-DFT have the same expressive power. The classes of
transductions defined by NMSOT and 2-NFT differ.

9 / 36

An Equivalent 1-way Model?
▶ The connection between MSO logic and finite automata is a

cornerstone of the analysis of logical specifications.
▶ We have such a connection between MSO transductions and

2-way finite transducers.
▶ Unfortunately, reasoning with 2-way models can be quite

technical and involved.
▶ Is there a 1-way model that expresses MSO definable

transductions?
▶ Also, implementation-wise a 1-way model might be preferred.

10 / 36

Streaming String Transducers
A Streaming String Transducer (SST) is a finite automaton with a
set X of output registers. Transitions are additionally annotated with
register updates, one for each register X ∈ X, of the form

X := w1X1w2 · · ·wnXnwn+1 with Xi ∈ X and wi ∈ Σ∗

Register updates are required to be copyless: each register appears
at most once in the right-hand side of the updates in a transition.

11 / 36

Streaming String Transducers
A Streaming String Transducer (SST) is a finite automaton with a
set X of output registers. Transitions are additionally annotated with
register updates, one for each register X ∈ X, of the form

X := w1X1w2 · · ·wnXnwn+1 with Xi ∈ X and wi ∈ Σ∗

Register updates are required to be copyless: each register appears
at most once in the right-hand side of the updates in a transition.

11 / 36

Example: Deterministic SST

12 / 36

Example: Nondeterministic SST

13 / 36

Overview: Adding SSTs

Theorem (Alur, Černy 2010; Alur, Deshmukh 2011). DMSOT and
DSST have the same expressive power. So have NMSOT and NSST.

14 / 36

Languages vs. Transductions

15 / 36

Inbetween Functions and Relations
▶ Equivalence is decidable for 2-DFTs, DMSOTs, and DSSTs,

while it is undecidable for their nondeterministic counter-parts.
▶ For NFTs, there is a robust subclass, namely NFTs defining

finite-valued relations.
▶ Does this robustness extend to finite-valued relations defined by

2-NFTs, NMSOTs, NSSTs?

16 / 36

Finite-valued Transducers

Finite-valued Transducers
A transduction T is called finite-valued if there is a bound k such
that T associates at most k outputs to each input.

Example.

18 / 36

Properties of Finite-valued FTs
A transduction T is called finite-valued if there is a bound k such
that T associates at most k outputs to each input.

▶ Equivalence for finite-valued NFT is decidable (Culik,
Karhumäki 1986).

▶ It is decidable if a given NFT is finite-valued (Weber 1990).
▶ Every k-valued NFT can be effectively decomposed into a union

of k single-valued NFT (Weber 1993).

▶ Decomposition allows for a new test for equivalence.

19 / 36

Properties of Finite-valued FTs
A transduction T is called finite-valued if there is a bound k such
that T associates at most k outputs to each input.

▶ Equivalence for finite-valued NFT is decidable (Culik,
Karhumäki 1986).

▶ It is decidable if a given NFT is finite-valued (Weber 1990).
▶ Every k-valued NFT can be effectively decomposed into a union

of k single-valued NFT (Weber 1993).
▶ Decomposition allows for a new test for equivalence.

19 / 36

What About Finite-valued SSTs?
NSST were introduced by (Alur, Deshmukh 2011). The authors
raised the following questions:
▶ Is finite-valuedness of NSST decidable?
▶ Is equivalence for NSST decidable?
▶ Can every finite-valued NSST be decomposed into a finite

union of DSST?

We give positive answers to all these questions and consequently
obtain also results about finite-valued 2-NFTs and NMSOTs.

20 / 36

What About Finite-valued SSTs?
NSST were introduced by (Alur, Deshmukh 2011). The authors
raised the following questions:
▶ Is finite-valuedness of NSST decidable?
▶ Is equivalence for NSST decidable?
▶ Can every finite-valued NSST be decomposed into a finite

union of DSST?

We give positive answers to all these questions and consequently
obtain also results about finite-valued 2-NFTs and NMSOTs.

20 / 36

Results
Finite-valuedness

Theorem (FJLMPW 2024). It is decidable (PSPACE-complete)
whether a nondeterministic SST is finite-valued.

Decomposition

Theorem (FJLMPW 2024). Every k-valued SST can be effectively
decomposed into a union of k deterministic SST.

21 / 36

Results
Finite-valuedness

Theorem (FJLMPW 2024). It is decidable (PSPACE-complete)
whether a nondeterministic SST is finite-valued.

Decomposition

Theorem (FJLMPW 2024). Every k-valued SST can be effectively
decomposed into a union of k deterministic SST.

21 / 36

Consequences of Decomposition Result
Together with a result of (Alur, Deshmukh 2011), we obtain:

Corollary. Equivalence for k-valued SST is decidable in
elementary time.

Decidability was already known (Muscholl, Puppis 2019), but
without an elementary upper complexity bound.

Corollary. For finite-valued relations, the classes of 2-NFT, NSST,
and NMSOT coincide.

The decomposition entails a translation from finite-valued NSST to
2-NFT. The other direction was already known (Alur, Černy 2011).

22 / 36

Consequences of Decomposition Result
Together with a result of (Alur, Deshmukh 2011), we obtain:

Corollary. Equivalence for k-valued SST is decidable in
elementary time.

Decidability was already known (Muscholl, Puppis 2019), but
without an elementary upper complexity bound.

Corollary. For finite-valued relations, the classes of 2-NFT, NSST,
and NMSOT coincide.

The decomposition entails a translation from finite-valued NSST to
2-NFT. The other direction was already known (Alur, Černy 2011).

22 / 36

Overview: Adding Finite-valued Relations

23 / 36

Deciding Finite-valuedness

Characterization for Finite-Valuedness

Lemma. An SST is finite-valued iff it does not contain a “simply
divergent W-pattern”.

25 / 36

Differences between FTs and SSTs
Finite-valuedness is characterized for FTs and SSTs via “divergent
W-patterns”. Main ingredients to establish the characterization are
▶ a pumping technique for loops, and
▶ comparing the “delay” between runs on the same input.

FTs build their output from left-to-right, while SSTs do not have
this restriction.

Example.

This makes it necessary to develop a new pumping technique and a
new notion of “delay”. A suitable notion of “delay” was introduced
in (Filiot, Jecker, Löding, W. 2023).

26 / 36

Differences between FTs and SSTs
Finite-valuedness is characterized for FTs and SSTs via “divergent
W-patterns”. Main ingredients to establish the characterization are
▶ a pumping technique for loops, and
▶ comparing the “delay” between runs on the same input.

FTs build their output from left-to-right, while SSTs do not have
this restriction.

Example.

This makes it necessary to develop a new pumping technique and a
new notion of “delay”. A suitable notion of “delay” was introduced
in (Filiot, Jecker, Löding, W. 2023).

26 / 36

Differences between FTs and SSTs
Finite-valuedness is characterized for FTs and SSTs via “divergent
W-patterns”. Main ingredients to establish the characterization are
▶ a pumping technique for loops, and
▶ comparing the “delay” between runs on the same input.

FTs build their output from left-to-right, while SSTs do not have
this restriction.

Example.

This makes it necessary to develop a new pumping technique and a
new notion of “delay”. A suitable notion of “delay” was introduced
in (Filiot, Jecker, Löding, W. 2023).

26 / 36

Skeleton-idempotent Loops
The skeleton of an update α : X → (Σ ⊎ X)∗ is the update
α̂ : X → X∗ obtained by removing all letters from Σ.

Skeletons and their composition form a finite monoid.

A skeleton-idempotent loop is a factor of a run that starts and ends
in the same state and induces a skeleton-idempotent update (that is
an update α so that α and α · α have the same skeleton).

Example.

27 / 36

Skeleton-idempotent Loops
Example.

28 / 36

Pumping Skeleton-idempotent Loops
Let α be a skeleton-idempotent update. For every X ∈ X there exist
two words u, v ∈ Σ∗ such that

αn(X) = un−1α(X)vn−1.

Example.

A Ramsey-type argument shows that in a long enough run a
sequence of (pairwise disjoint) skeleton-idempotent loops occur.

29 / 36

Pumping Skeleton-idempotent Loops
Let α be a skeleton-idempotent update. For every X ∈ X there exist
two words u, v ∈ Σ∗ such that

αn(X) = un−1α(X)vn−1.

Example.

A Ramsey-type argument shows that in a long enough run a
sequence of (pairwise disjoint) skeleton-idempotent loops occur.

29 / 36

Pumping Skeleton-idempotent Loops
Let α be a skeleton-idempotent update. For every X ∈ X there exist
two words u, v ∈ Σ∗ such that

αn(X) = un−1α(X)vn−1.

Example.

A Ramsey-type argument shows that in a long enough run a
sequence of (pairwise disjoint) skeleton-idempotent loops occur.

29 / 36

Pumping Skeleton-idempotent Loops
Given a run with m such loops, pumping the i-th loop ni times yields
output of the form

w0(u1)
k1−1w1(u2)

k2−1 · · ·wr−1(ur)
kr−1wr,

where r is bounded by 2m|X| and k1, . . . , k1 ∈ {n1, . . . , nm}.

30 / 36

Pumping Skeleton-idempotent Loops
Given a run with m such loops, pumping the i-th loop ni times yields
output of the form

w0(u1)
k1−1w1(u2)

k2−1 · · ·wr−1(ur)
kr−1wr,

where r is bounded by 2m|X| and k1, . . . , k1 ∈ {n1, . . . , nm}.

30 / 36

Pumping Skeleton-idempotent Loops
Goal: Use the “simply divergent W-pattern” to create a set of runs
(via pumping) with the same input but different outputs.

31 / 36

Word Inequalities
A word inequality with parameters is an inequality of two words in
which repetitions of some subwords are parameterized by variables.

A solution is an assignment of numbers to the variables such that
the resulting words are different.

Example.
▶ (ab)xaa(b)xabba , ababaa(bba)x (one parameter)

The only non-solution is x = 2:

ababaabbabba =
ababaabbabba

▶ b(ab)yab(b)x , (ba)xba(b)yb (two parameters)

Non-solutions are all choices such that x = y,
Solutions are all choices such that x , y.

32 / 36

Word Inequalities
A word inequality with parameters is an inequality of two words in
which repetitions of some subwords are parameterized by variables.

A solution is an assignment of numbers to the variables such that
the resulting words are different.

Example.
▶ (ab)xaa(b)xabba , ababaa(bba)x (one parameter)

The only non-solution is x = 2:

ababaabbabba =
ababaabbabba

▶ b(ab)yab(b)x , (ba)xba(b)yb (two parameters)

Non-solutions are all choices such that x = y,
Solutions are all choices such that x , y.

32 / 36

Word Inequalities
A word inequality with parameters is an inequality of two words in
which repetitions of some subwords are parameterized by variables.

A solution is an assignment of numbers to the variables such that
the resulting words are different.

Example.
▶ (ab)xaa(b)xabba , ababaa(bba)x (one parameter)

The only non-solution is x = 2:

ababaabbabba =
ababaabbabba

▶ b(ab)yab(b)x , (ba)xba(b)yb (two parameters)

Non-solutions are all choices such that x = y,
Solutions are all choices such that x , y.

32 / 36

Saarela and Consequences

Theorem (Saarela 2015). A word inequality with a single
parameter x either has no solutions or the set of solutions is co-finite
(the number of non-solutions is bounded by the number of
occurences of x in the inequality).

Consequences

▶ We show properties of the solution space for word inequalities
with multiple parameters.

▶ We show that if each inequality in a finite system of inequalities
is solvable, then the system is solvable.

33 / 36

Saarela and Consequences

Theorem (Saarela 2015). A word inequality with a single
parameter x either has no solutions or the set of solutions is co-finite
(the number of non-solutions is bounded by the number of
occurences of x in the inequality).

Consequences

▶ We show properties of the solution space for word inequalities
with multiple parameters.

▶ We show that if each inequality in a finite system of inequalities
is solvable, then the system is solvable.

33 / 36

“simply divergent W-pattern” ⇒ not finite-valued
▶ Pattern yields two runs whose outputs have the right format for

a word inequality with parameters x,y,z.

▶ Since there is one solution (x = 1,y = 1,z = 1), the set of
solutions is infinite (and obeys some properties).

▶ We show that (x = i − 1,y = j − i − 1,z = M − j) for all i < j (with
i, j from a specific set) for some arbitrarily large M is a solution.

34 / 36

“simply divergent W-pattern” ⇒ not finite-valued

▶ We now parameterize each vn1 in (uvn1w)i−1, each vn3 in
(uvn3w)j−i−1, and each vn5 in (uvn5w)M−j.

▶ Iterating through all i < j forms a finite system of word
inequalities. It has a solution as each inequality has a solution.

▶ Each inequality is generated by a run with the same input.
Hence, the SST is not finite-valued.

35 / 36

“simply divergent W-pattern” ⇒ not finite-valued

▶ We now parameterize each vn1 in (uvn1w)i−1, each vn3 in
(uvn3w)j−i−1, and each vn5 in (uvn5w)M−j.

▶ Iterating through all i < j forms a finite system of word
inequalities. It has a solution as each inequality has a solution.

▶ Each inequality is generated by a run with the same input.
Hence, the SST is not finite-valued.

35 / 36

Summary
▶ We completed the picture for finite-valued SSTs concerning

their expressive power and answered key decidability questions.
▶ Future work: Complexities are likely not optimal.

36 / 36

	Transducer Models
	Finite-valued Transducers
	Deciding Finite-valuedness
	Summary

