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Abstract

We present results on uniformization of automatic tree relations by automaton
definable functions. We look at two settings of uniformization by automata. We
consider the case that an automaton is not required to verify the correctness of
the input, and the case that an automaton is required to validate the input.

Concerning the first setting, we show that it is decidable whether relations
recognized by deterministic top-down tree automata have a uniformization in
the class of top-down tree transformations.

In the second setting, we present our results regarding the uniformization
of deterministic top-down tree automata definable relations by top-down tree
transducers and also the uniformization of bottom-up tree automata definable
relations by bottom-up tree transducers.
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Chapter 1

Introduction

A uniformization of a binary relation is a function that maps each element of
the domain to a unique element of the image such that the pair is part of the
relation. In connection to automata theory, relations and functions from classes
defined by finite automata are considered. Uniformization problems which arise
are:

• Investigate whether each relation R that comes from a class C has a uni-
formization in a class C′.

• Given a definition of a relation R that comes from a class C, decide whether
R has a uniformization in a class C′, and if possible construct one which
realizes R in C′.

The study of these questions can be motivated by viewing relations as spec-
ifications that relate input to allowed outputs. A uniformization of a relation
can then be seen as a form of automatic program synthesis from specifications.
A well-known example is Church’s synthesis problem [Chu62], for a given in-
put/output specification the question is asked whether there is a circuit which
realizes the specification.

These questions have been studied in different settings. Concerning auto-
matic relations as specifications, and the question whether an automatic relation
has a uniformization in the same class, it was shown that automatic relations
over finite and infinite words have automatic uniformizations [Sie75, CG99].
For finite trees the uniformization result was obtained by [CL07, KW11], but
can also be obtained from earlier results in [Eng78]. In a variant of this set-
ting, where it is asked for a uniformization in another class, in [BL69] it was
shown for the case of infinite words, that it is decidable whether an ω-automatic
specification admits a uniformization by synchronous deterministic sequential
transducers. For finite words, it was shown in [CL12] that is it decidable whether
an automatic relation has a uniformization by a subsequential transducer.

The aim of this thesis is to explore uniformization of tree-automatic relations
by tree transducers.
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2 Chapter 1. Introduction

Outline

Following this introduction, in Chapter 2 we introduce notations and definitions
on trees, tree automata and games that we will use throughout this thesis.

In Chapter 3 we present a solution for the uniformization problem for auto-
matic tree relations in the same class that is derived from a result of [Eng78].

In the next two chapters we are concerned with uniformization of tree-
automatic relations in different classes.

In Chapter 4 we investigate whether the decision problem corresponding to
the question whether a given deterministic top-down tree automata-recognizable
relation has a uniformization is decidable in different settings. We are looking for
a uniformization in the class of top-down tree transformations. Before turning
to more general cases, we show that it is decidable whether a transducer can
realize a uniformization of a relation by simply exchanging each input symbol
with an output symbol in a given tree. In the extension of this restricted case,
two distinctions are made. Primarily, we study the setting where a top-down
tree transducer implementing a uniformization is not required to validate the
input. In this setting, we consider the case that the transducer defining a
uniformization has no restrictions. In particular the transducer is allowed to
skip an unbounded number of output symbols. We show that it is decidable
whether a given relation has a uniformization in the class of top-down tree
transformations. In the setting where a top-down tree transducer implementing
a uniformization is required to validate the input we study the case where the
transducer defining the uniformization produces one output symbol for each
read input symbol.

In Chapter 5 we study a similar setting in case of automatic tree relations to
the restricted setup studied in the previous chapter concerning the uniformiza-
tion by bottom-up tree transducers.

Finally, in Chapter 6 we conclude this thesis by summarizing our results and
give some ideas for future research based on the work of the previous chapters.
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Chapter 2

Preliminaries

In this chapter, we formalize the concepts used in this thesis and state some
results. In the following sections, we present basic notations and definitions for
trees, tree automata, and games. Beforehand, we fix some general notations.

General Notations

The set of natural numbers containing zero is denoted by N. For a set S, the
powerset of S is denoted by 2S .

An alphabet is a finite non-empty set of symbols, called letters. Alphabets
are usually denoted by Σ or Γ. A word is a finite or infinite sequence of letters.
The set of finite words (resp. finite non-empty words) over Σ is denoted by Σ∗

(resp. Σ+). The set of infinite words over Σ is denoted by Σω. The length
of a word w ∈ Σ∗ is denoted by |w|, the empty word is denoted by ε. For
w = a1 . . . an ∈ Σ∗ for some n ∈ N and a1, . . . , an ∈ Σ, let w[i] denote the ith
letter of w, i.e., w[i] = ai. Furthermore, let w[i, j] denote the infix from the ith
to the jth letter of w, i.e., w[i, j] = ai . . . aj . A subset L ⊆ Σ∗ is called language
over Σ.

The concatenation of two words u and v is the word u · v, usually denoted
uv. Furthermore, the concatenation of two languages U ⊆ Σ∗ and V ⊆ Σ∗ is
the set U ·V := {uv | u ∈ U, v ∈ V }, and the complement of U is the set Σ∗ \U ,
shortly written as U .

For all words u, v ∈ Σ∗, u is a prefix of v if there exists w ∈ Σ∗ such that
v = uw. Given two words u and v, the greatest common prefix of u and v,
denoted by gcp(u, v), is the longest word that is a prefix of both u and v.

For a language L ⊆ Σ∗, let L0 := {ε} and Ln+1 is recursively defined by
Ln+1 := LLn. The Kleene closure of L is the language L∗ :=

⋃
n≥0 L

n. The set
of regular expressions over Σ is built up inductively. Atomic expressions are ∅, a
for all a ∈ Σ, and ε. For regular expressions r and s, the expressions r · s, r+ s,
and r∗ are also regular expressions denoting the concatenation, the union and
the Kleene closure, respectively. Given a regular expression r, let L(r) denote
the language induced by r.

3



4 Chapter 2. Preliminaries
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graphical notation term notation

Figure 2.1: Representations of the tree from Example 2.1.

2.1 Ranked Trees

A ranked alphabet Σ is an alphabet where each letter f ∈ Σ has a finite set
of arities rk(f) ⊆ N. The set of letters of arity i is denoted by Σi. A ranked
alphabet Σ can be specified by the set

⋃m
i=0 Σi where m is the maximum arity

in Σ.
Let Σ =

⋃m
i=0 Σi be a ranked alphabet. A finite Σ-labeled ranked tree, or

tree for short, is a pair t = (domt, valt) with a set domt ⊆ {1, . . . ,m}∗ and a
mapping valt : domt → Σ, where

• domt is non-empty and finite with

– domt is prefix-closed, i.e., if ui ∈ domt, then u ∈ domt

– if ui ∈ domt, then uj ∈ domt for all 1 ≤ j < i

for all u ∈ N∗ and i ∈ N, and

• valt(u) ∈ Σi, if u ∈ domt has exactly i successors, i.e., u1, . . . , ui ∈ domt

and u(i+ 1) /∈ domt.

The set domt is called tree domain and each element in domt is called node.
A leaf is a node u such that ∀i ∈ N, ui /∈ domt. The root is the node ε. For
u, v ∈ domt we speak of v as ith successor of u, if there is i ∈ N such that
v = ui. Naturally, the tree domain is equipped with a prefix relation v (resp.
strict prefix relation @) on nodes, where u v v (resp. u @ v) for u, v ∈ domt if
and only if there is w ∈ N∗ (resp. w ∈ N+) such that v = uw.

The set of all Σ-labeled trees (also called trees over Σ) is denoted by TΣ. A
subset T ⊆ TΣ is called tree language over Σ. The complement of T is TΣ \ T
written as T .

The following example illustrates the tree representations used in this thesis.

Example 2.1 Given a ranked alphabet Σ by Σ2 = {f}, Σ1 = {g}, and Σ0 =
{a, b}. Let t be a ranked tree with domt = {ε, 1, 2, 11, 21, 22} and valt(ε) =
valt(2) = f, valt(1) = g, valt(11) = valt(21) = a, and valt(22) = b. The graphical
and the term representation are shown in Figure 2.1.

The height h of a tree t is the length of a longest path through t, i.e.,
h(t) = max{|p| | p ∈ domt}.
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A subtree t|u of a tree t at node u is defined by

• domt|u = {i ∈ N∗ | ui ∈ domt}

• valt|u(v) = valt(v) for all v ∈ domt|u

In order to formalize concatenation of trees we introduce the notion of special
trees. A special tree over Σ is a tree over Σ∪· {◦} such that ◦ occurs exactly once
at a leaf. Given t ∈ TΣ and u ∈ domt, we write t[◦/u] for the special tree that
is obtained by deleting the subtree at u and replacing it by ◦.

Let SΣ be the set of special trees over Σ. For t ∈ TΣ or t ∈ SΣ and s ∈ SΣ

let the concatenation t ·s be the tree that is obtained from t by replacing ◦ with
s.

In Chapters 4 and 5 on uniformization by tree transducers we need the
following notations.

Let Xn be a set of n variables {x1, . . . , xn} and Σ be a ranked alphabet.
We denote by TΣ(Xn) the set of all trees over Σ which additionally can have
variables from Xn at their leaves. Let X =

⋃
n>0Xn. For t ∈ TΣ(Xn) let t[x1 ←

t1, . . . , xn ← tn] be the tree that is obtained by substituting each occurrence of
xi ∈ Xn by ti ∈ TΣ(X) for every 1 ≤ i ≤ n.

A tree from TΣ(Xn) such that all variables from Xn occur exactly once
and in the order x1, . . . , xn when reading the leaf nodes from left to right, is
called n-context over Σ. If C is an n-context and t1, . . . , tn ∈ TΣ(X) we write
C[t1, . . . , tn] instead of C[x1 ← t1, . . . , xn ← tn].

2.2 Automata on Ranked Trees

A word language L ⊆ Σ∗ is called regular if L is recognizable by a finite au-
tomaton on words, see e.g. [HMU01] for an introduction to finite automata.

A non-deterministic finite automaton (NFA) over an alphabet Σ is of the
form A = (Q,Σ,∆, q0, F ), where Q is a finite set of states, ∆ ⊆ Q × Σ × Q
is the transition relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
final states. A run of A on a word w = a1 . . . an ∈ Σ∗ is a sequence of states
ρ = ρ0 . . . ρn, such that ρ0 = q0 and (ρi, ai+1, ρi+1) ∈ ∆ for 0 ≤ i < n. The
run is successful if ρn ∈ F . A word w ∈ Σ∗ is accepted by A if, and only
if, there exists a successful run of A on w. The language recognized by A is
L(A) = {w ∈ Σ∗ | A accepts w}. An NFA A = (Q,Σ,∆, q0, F ) is deterministic
(a DFA) if for each a ∈ Σ and each q ∈ Q there exists at most one transition
(q, a, q′) ∈ ∆.

Tree automata can be viewed as a straightforward generalization of finite au-
tomata on finite words, when words are interpreted as trees over unary symbols.
In the following we present bottom-up and top-down tree automata as well as
some results for tree automata used in this thesis. For a detailed introduction
to tree automata see e.g. [GS84] or [CDG+07].

Let Σ =
⋃m
i=1 Σi be a ranked alphabet. A non-deterministic tree automaton

(NTA) over Σ is a tuple A = (Q,Σ,∆, F ), where Q is a finite set of states,
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Figure 2.2: A run of the NTA A from Example 2.2.

F ⊆ Q is a set of final states, and ∆ ⊆
⋃m
i=0(Qi × Σi × Q) is the transition

relation.
Let t be a tree and A be an NTA, a run of A on t is a mapping ρ : domt → Q

compatible with ∆, i.e., for each node u ∈ domt, if valt(u) ∈ Σi, then
(ρ(u1), . . . , ρ(ui), valt(u), ρ(u)) ∈ ∆. The run is successful if ρ(ε) is a final
state. A tree t ∈ TΣ is accepted if, and only if, there is a successful run of A on
t. The tree language recognized by A is T (A) = {t ∈ TΣ | A accepts t}.

Example 2.2 Let Σ be a ranked alphabet given by Σ2 = {f}, Σ1 = {g}, and
Σ0 = {a, b}. Consider the NTA A = ({q0, q1, q2},Σ,∆, {q2}) with ∆ =

{(a, q0), (b, q0)}
∪ {(qi, g, qi) | 0 ≤ i ≤ 2}
∪ {(qi, qj , f, qmin(2,i+j+1))}.

The recognized tree language is the set of all trees with at least two occurrences
of f . A tree t and an accepting run of A on t is depicted in Figure 2.2.

A tree language T ⊆ TΣ is called regular if T is recognizable by a non-
deterministic tree automaton. As the class of regular word languages, the class
of regular tree languages is closed under Boolean operations.

A special case of NTAs are deterministic tree automata (DTAs). A tree
automaton A = (Q,Σ,∆, F ) is deterministic if there are no two ambiguous
rules. That is, for each f ∈ Σi and each q1, . . . , qi ∈ Q there is at most one
transition (q1, . . . , qi, f, q) ∈ ∆. In other words, each run of A on a tree t is
unique. For instance, consider the automaton from Example 2.2 that is in fact
deterministic. It should be noted, that for every NTA there exists an equivalent
DTA that recognizes the same tree language. As for finite automata on words,
the subset construction is used for determinization.

Sometimes it is convenient to consider tree automata in which the state set
only consists of productive states, i.e., for an NTA A with state set Q, each q ∈ Q
is reachable and for each q ∈ Q there exists a tree t such that t is accepted by A
starting from q. Also, in some cases it is useful to consider tree automata such
that there exists at least one run for every tree. Tree automata that fulfill this
property are called complete.
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Another automaton model that also recognizes the class of regular tree lan-
guages are top-down tree automata.

Let Σ =
⋃m
i=1 Σi be a ranked alphabet. A non-deterministic top-down tree

automaton (N↓TA) over Σ is of the form A = (Q,Σ, Q0,∆) consisting of a finite
set of states Q, a set Q0 ⊆ Q of initial states, and ∆ ⊆

⋃m
i=0(Q × Σi × Qi) is

the transition relation. The pairs ∆ ∩ (Q× Σ0) are called final combinations.
Let t be a tree andA be an N↓TA, a run ofA on t is a mapping ρ : domt → Q

compatible with ∆, i.e., ρ(ε) ∈ Q0 and for each node u ∈ domt, if valt(u) ∈ Σi

with i > 0, then (ρ(u), valt(u), ρ(u1), . . . , ρ(ui)) ∈ ∆. A run is successful if for
each leaf u, the pair (ρ(u), valt(u)) is a final combination. A tree t ∈ TΣ is
accepted if, and only if, there is a successful run of A on t. The tree language
recognized by A is T (A) = {t ∈ TΣ | A accepts t}.

It is easily seen that NTAs and N↓TAs are equivalent, by reversing the
transitions and exchanging final and initial states one obtains an N↓TA from
an NTA and vice versa.

A top-down tree automaton A = (Q,Σ, Q0,∆) is deterministic (a D↓TA) if
the set Q0 is a singleton set and for each f ∈ Σi and each q ∈ Q there is at
most one transition (q, f, q1, . . . , qi) ∈ ∆.

However, unlike bottom-up tree automata, non-deterministic and determin-
istic top-down automata are not equally expressive. There are regular tree
languages that cannot be recognized by a D↓TA. For example, consider the tree
language T = {f(a, b), f(b, a)} which is obviously regular, but not recognizable
by a D↓TA. A D↓TA accepting f(a, b) and f(b, a) would also accept f(a, a),
thus there exists no D↓TA that recognizes T .

Intuitively, the class of D↓TA-recognizable tree languages is exactly the class
of path-closed languages, see [Vir80]. Path-closure is defined as follows. The path
language π(t) of a tree t ∈ TΣ is defined inductively by:

• if t ∈ Σ0, then π(t) = t, and

• if t = f(t1, . . . , ti) ∈ TΣ, then π(t) =
⋃j=i
j=1{fjw | w ∈ π(tj)}.

Let T be a tree language over Σ, then π(T ) =
⋃
t∈T π(t), the path-closure of

T is defined by pathclosure(T ) = {t ∈ TΣ | π(t) ⊆ π(T )}. A tree language is
path-closed if pathclosure(T ) = T .

In [GS84] it was shown that it is decidable whether a regular tree language
can be recognized by a deterministic top-down tree automaton. We present an
alternative proof of this result using closure properties of finite tree automata.

Theorem 1 It is decidable whether a regular tree language is D↓TA-
recognizable.

Proof. Let A = (Q,Σ, Q0,∆) be a N↓TA. We assume that all states of A are
productive. We define the D↓TA A′ = (2Q,Σ, {Q0},∆′) by a top-down subset
construction with:

• (R, f,R1, . . . , Ri) ∈ ∆′ if Rj = {rj | ∃r ∈ R with (r, f, r1, . . . , ri) ∈ ∆} for
each j ∈ {1, . . . , i},
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• (R, a) ∈ ∆′ if there exists r ∈ R with (r, a) ∈ ∆.

We show that T (A′) = T (A) holds if, and only if, T (A) is D↓TA-recognizable.
Clearly, if T (A′) = T (A), then T (A) is D↓TA-recognizable.

For the other direction, assume there exists a complete D↓TA B =
(Q′′,Σ, {q0},∆′′) with T (B) = T (A). We first show that T (A′) ⊇ T (A). Let t
be a tree and let ρ be a run of A on t and ρ′ be the unique run of A′ on t. We
prove by induction over the height of a node u in a tree t that if ρ(u) = r, then
ρ′(u) = R with r ∈ R.

If the height of the node is 0, then u = ε. We have ρ(ε) = q ∈ Q0, ρ′(ε) = Q0

with q ∈ Q0.
Let n+1 be the height of a node u′ in the tree, assume that the claim holds for

n. Let u′ = uj with j ∈ {1, . . . , rk(valt(u))}, ρ(u) = r and ρ(u′) = rj , then there
exists (r, valt(u), r1, . . . , ri) ∈ ∆. By induction hypothesis it follows that ρ′(u) =
R with r ∈ R and by construction of A′ there exists (R, valt(u), R1, . . . , Ri) ∈ ∆′

with rj ∈ Rj . Hence ρ′(u′) = Rj with rj ∈ Rj .
Let t ∈ T (A). There exists an accepting run ρ of A on t, i.e., for each leaf

u ∈ domt holds (ρ(u), valt(u)) ∈ ∆. Consequently, for the unique run ρ′ of A′
on t holds for each leaf u that (ρ′(u), valt(u)) ∈ ∆′, since ρ(u) ∈ ρ′(u). Hence,
t ∈ T (A′).

Towards a contradiction, assume that there is a tree t ∈ T (A′) \ T (B). We
now construct a tree t′ that is accepted by A and rejected by B. Let ρ′ resp. ρ′′
denote the unique run of A′ resp. B on t. Since t ∈ T (A′) \ T (B), there exists
a leaf w ∈ domt with valt(w) = a, ρ′′(w) = q and ρ′(w) = R such that (q, a)
is not accepted in B, but (r, a) is accepted in A for some r ∈ R (∗). Thus,
t|u ∈ T (A′ρ′(u)) \ T (Bρ′′(u)) holds for each u v w.

Let w = uv, ρ′′(u) = q and ρ′(u) = R. We show by induction on the length
of v that there exists r ∈ R such that there exists t′ ∈ T (Ar) \ T (Bq).

For the induction base let |v| = 0, then u = w. Let t′ = a, then it follows
directly from (∗) that a ∈ T (Ar) \ T (Bq) for some r ∈ R.

For the induction step consider |v| = n+1. Assume the claim holds for n. Let
v = jv′ with valt(u) = f and j ∈ {1, . . . , rk(f)} and let the runs ρ′ and ρ′′ result
in ρ′′(u) = q, ρ′′(uj) = qj , ρ′(u) = R and ρ′(uj) = Rj . From the existence of the
run it follows that there are (q, f, q1, . . . , qi) ∈ ∆′′ and (R, f,R1, . . . , Ri) ∈ ∆′.
From the induction hypothesis we know that there exists some rj ∈ Rj such
that there exists a t′j ∈ T (Arj ) \ T (Bqj ). By construction of A′ there is some
r ∈ R with (r, f, r1, . . . , ri) ∈ ∆. Since A only contains productive states there
exist trees t′1 ∈ T (Ar1), . . . , t′j−1 ∈ T (Arj−1), t′j+1 ∈ T (Arj+1), . . . , t′i ∈ T (Ari).
Now let t′ = f(t′1, . . . , t

′
i), then t

′ ∈ T (A′r) \ T (Bq).
Choosing v = w, we obtain ρ′′(ε) = q0 and ρ′(ε) = Q0. This means there

exists t′ ∈ T (A) \ T (B), contradicting T (B) = T (A).
Since it is decidable whether A and A′ recognize the same language (cf. e.g.

[CDG+07]), it is decidable whether T (A) is D↓TA-recognizable.

�
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An extension to regular tree languages are (binary) tree-automatic relations.
A way for a tree automaton to read a tuple of finite trees is to use a ranked
vector alphabet. Thereby, all trees are read in parallel, processing one node
from each tree in a computation step. Hence, the trees are required to have
the same domain. Therefore we use a padding symbol to extend the trees if
necessary. Formally, this is done in the following way.

Let Σ,Γ be ranked alphabets and let Σ⊥ = Σ∪· {⊥}, Γ⊥ = Γ∪· {⊥}. The
convolution of (t1, t2) with t1 ∈ TΣ, t2 ∈ TΓ is the Σ⊥×Γ⊥-labeled tree t = t1⊗t2
defined by

• domt = domt1 ∪ domt2 , and

• valt(u) = (val⊥t1(u), val⊥t2(u)) for all u ∈ domt,

where val⊥ti (u) = valti(u) if u ∈ domti and val⊥ti (u) = ⊥ otherwise for i ∈ {1, 2}.
We define the convolution of a tree relation R ⊆ TΣ × TΓ to be the tree

language TR := {t1 ⊗ t2 | (t1, t2) ∈ R}. The definition is easily generalized to
tuples of trees, but is not needed within this thesis.

We call a (binary) relation R tree-automatic if there exists a regular tree
language T such that T = TR. For ease of presentation, we say a tree automaton
A recognizes R if it recognizes the convolution TR and denote by R(A) the
induced relation R.

Example 2.3 Let Σ be a ranked alphabet given by Σ2 = {f, g}, and Σ0 =
{a, b}. Consider the following relation R ⊆ TΣ×TΣ that contains a pair of trees
if there exists a position that has the same label in both trees. Formally,

R := {(t1, t2) | ∃u ∈ domt1 ∩ domt2 with valt1(u) = valt2(u)}.

The DTA A = ({q, qF },Σ⊥ × Σ⊥,∆, {qF }) with ∆ =

{
(
(a, a), qF

)
,
(
(b, b), qF

)
}

∪ {
(
(a,⊥), q

)
,
(
(⊥, a), q

)
,
(
(b,⊥), q

)
,
(
(⊥, b), q

)
}

∪ {
(
q, q, (f, f), qF

)
,
(
q, q, (g, g), qF

)
}

∪ {
(
q1, q2, (σ1, σ2), qF

)
| (σ1, σ2) ∈ Σ2 × Σ2 and {qF } ⊆ {q1, q2}}

∪ {
(
q, q, (σ1, σ2), q

)
| (σ1, σ2) ∈ Σ2 × Σ⊥ ∪ Σ⊥ × Σ2}

recognizes this relation. A pair of trees (t1, t2) ∈ TΣ × TΣ that belongs to the
relation and its convolution t1 ⊗ t2 accepted by A, are depicted in Figure 2.3.

2.3 Games

It is natural to view synthesis problems as infinite games between two players,
where one player supplies an input part and the other player reacts with an
output part. In this setting, we will refer to the players as player In and player
Out. For notational convenience, we assume that player In is male and player
Out is female. The games are played on a graph that has a partition of the
vertices into two sets; vertices of In, graphically represented as rectangles, and
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tree t1 tree t2 convolution t1 ⊗ t2

Figure 2.3: The convolution t1 ⊗ t2 is accepted by A from Example 2.3.

vertices of Out, graphically represented as circles. The players move a token
along the edges, if the token is on a vertex belonging to In, he can choose the
next edge and vice versa for Out. Together with a winning condition, a game
graph is turned into a game.

A finite game graph is of the form G = (VIn, VOut, E, c), where

• VIn is the set of vertices of player In,

• VOut is the set of vertices of player Out,

• E ⊆ V × V with V = VIn ∪· VOut is the set of edges or moves, and

• c : V → C is a coloring of the vertices with colors from a finite set of
colors C.

A play in G is a maximal sequence α of vertices compatible to the edges of the
game graph. A sequence α is maximal if it is either infinite or it ends in a vertex
without outgoing edges. The players move a token along the edges. In moves
the token from vertices in VIn, Out moves the token from vertices in VOut.

Given a play α ∈ V ∗ or α ∈ V ω, the winner of the play is determined by the
corresponding sequence c(α) ∈ C∗ or c(α) ∈ Cω. Therefore, we have to specify
a winning condition by a set Win ⊆ Cω ∪C∗. Out wins a play α if c(α) ∈Win,
otherwise In wins. A Game is a pair G = (G,Win) of a game graph and a
winning condition as defined above.

The coloring c : V → C is only needed in some cases. Hence, if we specify a
game graph without a coloring, we implicitly assume that C = V and c : V → V
is the identity function. In particular, in this thesis we do not consider games
that need a vertex coloring, but we consider games that start in a specific initial
vertex. In these cases, the initial vertex is specified as an additional component
of the game graph. Given a game graph with an initial vertex v, a play is then
a maximal sequence of vertices starting in v.

An example of a game graph without coloring is shown in Figure 2.4.
To describe a game play we introduce the notion of strategies. A strategy

outputs the player’s next move given a finite prefix of a play ending in a vertex
of said player. A strategy for Out is a function
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v0 v1

v2 v3 v4

Figure 2.4: A game graph.

σOut : V ∗VOut → V

such that σOut(xv) = v′ with x ∈ V ∗, v, v′ ∈ V implies that (v, v′) ∈ E.
Given a play α of vertices, let α(i) denote the ith vertex in this sequence

starting with 1. A play α is played according to σOut if σOut(α(1) . . . α(i)) =
α(i+ 1) for all i ∈ N with α(i) ∈ VOut.

Given a game G = (G,Win) and a vertex v ∈ V . Let Out(σIn, v0) denote
the set of all plays α starting in v. A strategy σOut for Out is a winning strategy
from v if c(α) ∈ Win for all α ∈ Out(σOut, v). That is, Out wins every play
starting in v, no matter how In plays, if Out plays according to her strategy.
The same definitions apply for In with VIn instead of VOut.

The set WOut ⊆ V from which Out has a winning strategy is called winning
region of Out. Analogously, WIn ⊆ V from which In has a winning strategy is
called the winning region of In. A game is called determined if we can partition
V into the sets WIn,WOut such that V = WIn ∪· WOut, i.e. from each vertex
either In or Out has a winning strategy.

Restricted types of strategies are positional or memoryless strategies, mean-
ing the strategy does not consider the previously seen vertices, but only the
current vertex. More formally, a positional strategy for Out is a mapping
σOut : VOut → V such that (v, σOut(v)) ∈ E for all v ∈ VOut. Similarly for
In.

A game is called positionally determined if from each vertex one of the players
has a positional winning strategy.

In the following chapters, we consider so-called safety games. An important
property of this type of game is the positional determinacy and the fact that a
winning strategy for a player can effectively be computed in a safety game, see
e.g. [GTW02].

A winning condition Win ⊆ Cω ∪ C∗ is called a safety condition if there is
D ⊆ C such that α ∈Win if, and only if, only colors from D occurs in α. The
objective of Out is to stay inside a safe region of vertices with colorD. Therefore,
a safety game can fully be specified by the game graph G = (VIn, VOut, E) and
a set F ⊆ V of vertices that specify the safe region. The set V \F specifies the
region that Out has to avoid in order to win the game.
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Chapter 3

Uniformization of
Tree-Automatic Relations

As already mentioned in the introduction, a uniformization of a relation R ⊆
X×Y is a function fR : X → Y that maps every element of the domain of R to
an element of Y that is in relation with this element. That is, a function with
the same domain as R and (x, fR(x)) ∈ R for all x ∈ dom(R).

In this chapter we consider the question whether a tree-automatic relation
has a uniformization in the same class. More formally, let R be a tree-automatic
relation. In this context, the uniformization problem is the decision problem
whether there exists a uniformization of R whose graph defines a tree-automatic
relation.

3.1 Uniformization Within the Same Class

This question was already considered in [CL12] with the result that every tree-
automatic relation has a tree-automatic uniformization based on results from
[CL07] and [KW11]. There, an equivalence relation is defined that makes it
possible to construct a tree automaton that contains exactly one representative
from each equivalence class.

However, the result can also be deduced from a proof of a result in [Eng78].
In [Eng78] it is shown that relations induced by non-deterministic top-down tree
transducers have a uniformization by a deterministic top-down tree transducer
with regular look-ahead. There, for a given ordering of the transitions, the
deterministic transducer chooses the smallest transition that admits a successful
run whereby the choice can be verified by checking the regular look-ahead.

We will now present a proof for the uniformization result on tree-automatic
relations using a similar idea. According to some ordering of the transitions of a
↓TA, we will construct a N↓TA that guesses at each point in a run the smallest
possible transition that admits a successful run on the remaining input. The
choice is then verified in the remaining part of the run by tracking that no
smaller transition would yield a successful run.

Theorem 2 Every tree-automatic relation has a tree-automatic uniformization.

13
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Proof. Let R ⊆ TΣ × TΓ be a tree-automatic relation that is recognized by a
N↓TA A = (Q,Σ⊥ × Γ⊥, Q0,∆). Let Aq denote the N↓TA with results from A
by replacing Q0 with {q}. Our goal is to find a N↓TA that recognizes a relation
R′ ⊆ R with dom(R) = dom(R′) such that there exists for each t ∈ dom(R)
exactly one t′ ∈ TΓ with (t, t′) ∈ R′.

Informally, the idea is to order the transitions with the same state and input
symbol, and at each point in a run, when it is possible to use a smaller transition,
the automaton non-deterministically pursues a path of the smaller run. If the
path of the smaller run is also accepting, the automaton rejects the current
input-output combination.

We assume that Q0 = {q0} is a singleton set, which is not a restric-
tion. Otherwise, we introduce a new initial state q0, and for each tran-
sition (q, (f, g), q1, . . . , qn) ∈ ∆ such that q ∈ Q0 we add the transition
(q0, (f, g), q1, . . . , qn) to ∆, and replace Q0 by {q0}.

Let ≺ denote a partial ordering on the transitions such that for each q ∈ Q
and each f ∈ (Σ⊥)i, i ≥ 0 all transitions of the form (q, (f, g), q1, . . . , qn) ∈
∆, g ∈ (Γ⊥)j , j ≥ 0 and q1 . . . , qn ∈ Q are comparable. The order-
ing should fulfill the condition that for two comparable transition r1 =
(q, (f, g1), q1, . . . , qm), r2 = (q, (f, g2), p1, . . . , pn) with g1 ∈ (Γ⊥)j , g2 ∈ (Γ⊥)k
holds r1 ≺ r2 if j < k. Consider two comparable transitions r1, r2 ∈ ∆. We say
r1 is smaller than r2 if r1 ≺ r2.

Now we are ready to construct a N↓TA B that recognizes a uniformization
of R. We define B = (Q′,Σ⊥ × Γ⊥, Q

′
0,∆

′), where

• Q′ ⊆ Q× 2Q is the set of states,

The intuitive meaning of a state (q, P ) ∈ Q′ is as follows. Given a node
u ∈ domt, consider a run ρA of A on t ⊗ t′ consisting of an input tree t
and an output tree t′ such that ρA(u) = q. If we have a run ρB of B on
t⊗ t′ with ρB(u) = (q, P ) there exists for each p ∈ P a run ρ′A on t⊗ t′′ for
an alternative output t′′ with ρ′A(u) = p such that A would have taken a
smaller transition at some point v v u which then would lead to a state
p.

• Q′0 = {(q0, ∅)} is the singleton set of initial states, and

• ∆′ is the transition relation:

The new transition relation is built up from ∆ with the following idea in
mind. In addition to the original run, the automaton keeps track of runs
that could have originated from choosing smaller applicable transitions.
The automaton followed non-deterministically one path of an alternative
smaller run. If a smaller run is not accepting, then the automaton can
follow a path that does not lead to a final combination, but if a smaller
run is accepting, then each path leads to a final combination. In this case,
the automaton does not accept as there exists another possible smaller
output.

This property is captured by the following transition rules.
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– Consider (q, P ) ∈ Q′ and (f, g) ∈ (Σ⊥ × Γ⊥)i, i > 0 such that
¬∃p ∈ P : (p, (f, g′)) ∈ ∆. For each rule r = (q, (f, g), q1, . . . , qn) ∈ ∆
we add new rules of the form(

(q, P ), (f, g), (q1, P1), . . . , (qn, Pn)
)

to ∆′ for all P1, . . . , Pn ⊆ 2Q that fulfill three conditions:

1. For each r′ = (q, (f, g′), p1, . . . , pm) ∈ ∆ with r′ ≺ r there is
pj ∈ Pj for exactly one j ∈ {1, . . . ,m}, and

2. for each p ∈ P and for each (p, (f, g′), p1, . . . , pm) ∈ ∆ there
is pj ∈ Pj for exactly one j ∈ {1, . . . , n} or there is j ∈ {n +
1, . . . , rk((f, g′))} with ⊥ /∈ dom(T (Apj )).

The first condition ensures that whenever a smaller transition is ap-
plicable the automaton choses non-deterministically a path of an al-
ternative smaller run. The second condition ensures that each already
followed path is non-deterministically continued. Additionally, each
Pj , 1 ≤ j ≤ m should only contain states that could have originated
from a smaller run. This is captured by the third condition.

3. For each pj ∈ Pj for all 1 ≤ j ≤ m there exists either
(q, (f, g′), p1, . . . , pm) ∈ ∆ or (p, (f, g′), p1, . . . , pm) ∈ ∆ such
that p ∈ P .

– For each (q, P ) ∈ Q′ we add
(
(q, P ), (a, b)

)
as final combination to

∆′ if and only if (q, (a, b)) ∈ ∆ and for all b′ ∈ Γ⊥ : (p, (a, b′)) /∈ ∆
for all p ∈ P and (q, (a, b)) ≺ (q, (a, b′)) if (q, (a, b′)) ∈ ∆.

Let R′ be the relation recognized by B. It is obvious that R′ ⊆ R with
dom(R′) ⊆ dom(R). We show dom(R) ⊆ dom(R′). Consider t ∈ dom(R),
let t1, . . . , tm denote the trees with (t, ti) ∈ R and accepting runs ρiA on t ⊗ ti
for 1 ≤ i ≤ m. We pick ti from all possible outputs t1, . . . , tm matching t such
that on each path through t⊗ ti holds: Let u be the deepest node on this path
such that for all v @ u holds the same transition was applied at v in all runs,
and the applied transition at u in ρiA was smaller then the applied transition at
u in ρjA for j 6= i, 1 ≤ j ≤ m.

We show by induction on the height of a node u ∈ domt⊗ti that there exists
a run ρB of B on t⊗ ti such that:

∀u ∈ domt⊗ti :

ρA(u) = q ⇒ρB(u) = (q, P ) and ∀p ∈ P : t|u /∈ dom(T (Ap))
(∗)

For the induction base, we have ρB(ε) = (q0, ∅) ∈ Q′0 and ρA(ε) = q0 ∈ Q0. The
claim holds directly.

For the induction step, consider a node u at height n such that the claim
holds. Let ρiA(u) = q and valt⊗ti(u) = (f, g) with rk(f, g) = k, by induc-
tion hypothesis we obtain that there exists a run ρB with ρB(u) = (q, P ) such
that ∀p ∈ P : t|u /∈ dom(T (Ap)). From the run ρiA on t ⊗ ti it follows that(
q, (f, g), ρiA(u1), . . . , ρiA(uk)

)
∈ ∆. Since ∀p ∈ P : t|u /∈ dom(T (Ap)), it also



16 Chapter 3. Uniformization of Tree-Automatic Relations

holds that ¬∃p ∈ P : (p, (f, g′)) ∈ ∆ for all g′ ∈ Γ⊥. Thus, by construction there
exist transitions of the form

(
(q, P ), (f, g), (ρiA(u1), P1), . . . , (ρiA(uk), Pk)

)
∈ ∆′.

Now, we have to pick a transition with suitable P1, . . . , Pk such that for all
pi ∈ Pi : t|ui /∈ dom(T (Api)), 1 ≤ i ≤ k.

We choose P1, . . . , Pk as follows. Let r denote the transition applied at u in
ρiA. To satisfy the first condition, for each transition r′ with r′ ≺ r, we have to
pursue a path of an alternative run on an alternative output for the given input,
which is different from the considered output beginning at u. More formally,
this corresponds to a tree (t|u⊗ t′i) · (t⊗ ti[u/◦]) such that t′i is compatible to r′.
This tree is not one of the trees t ⊗ tj with (t, tj) ∈ R for 1 ≤ j ≤ m, because
otherwise we would have chosen tj instead of ti from the possible output trees.
Thus, there exists no successful run of A on (t|u⊗t′i) ·(t⊗ti[u/◦]). In particular,
there is no successful run of Aq on t|u ⊗ t′i for all possible choices of t′i. This
means, there exists at least one path that does not lead to a final combination.
Let r′ = (q, (f, g′), p1, . . . , pn), if in this case the unsuccessful path is continued
in the jth successor of u, add pj to Pk.

To satisfy the second condition, we first remember that for each p ∈ P :
t|u /∈ dom(T (Ap)). So, for each applicable rule (p, (f, g′), p1, . . . , pn ∈ ∆, there
exists at least one t|ui /∈ dom(T (Api)) for 1 ≤ i ≤ n. In case that i ≤ n, we add
pi to Pi, otherwise we do not need to pursue the run any further.

By picking P1, . . . , Pk as described above, the claim also holds for each node
u at height n + 1. What is left to show is that the run ρB on t ⊗ ti is indeed
accepting, i.e., for each leaf u holds (ρB(u), valt⊗ti(u)) is a final combination.
Let valt⊗ti(u) = (a, b) and ρB(u) = (q, P ). Obviously, it follows directly from
(∗) that there is no p ∈ P such that (p, (a, b′) ∈ ∆ for all b′ ∈ Γ⊥. In addition,
there is no (q, (a, b′)) ∈ ∆ with (q, (a, b′)) ≺ (q, (a, b)) for all b′ ∈ Γ⊥, because
otherwise we would have chosen that output instead. Consequently, we have
shown that dom(R) ⊆ dom(R′).

With the same argumentation, if we construct a run on t ⊗ tj for another
output tj such that i 6= j and (t, tj) ∈ R, there exists at least one point in
the run such that a smaller transitions belonging to the run ρiA of A on t ⊗ ti
exists. Hence, at least a path of that run has to be pursued. No matter which
path is chosen, it leads to a final combination in ρiA, because (t, ti) ∈ R. So, B
does not accept, because the run of B can either not be continued once a final
combination in an alternative run occurs, or does not lead to a final combination
by construction of ∆′.

From the above proof it is clear that for each t ∈ dom(R) there exists exactly
one t′ such that (t, t′) ∈ R′.

�

In the next chapters we consider the setting where the given relation is
still tree-automatic, but we are looking for a uniformization in more restrictive
classes.



Chapter 4

Uniformization by Top-Down
Tree Transducers

In this chapter we investigate uniformization of tree-automatic relations in the
class of top-down tree transformations. We restrict ourselves in the scope of
this chapter to D↓TA-recognizable relations with D↓TA-recognizable domain.
We previously asked whether a tree-automatic relation has a uniformization in
the the same class, in this chapter we study the question: “Given a D↓TA-
recognizable relation with D↓TA-recognizable domain, has the relation a uni-
formization in the class of top-down tree transformations?”. However, we are
mainly concerned with a variant of this uniformization problem. Thereby, we
only require a transducer to realize a uniformization of a relation in the following
way. For each valid input tree the transducer selects one output tree, on each
other input tree which is not part of the domain the transducer may behave
arbitrarily. To distinguish between these issues, we will speak of uniformiza-
tion with input validation and uniformization without input validation. Our
main result will be that the uniformization problem without input validation is
decidable.

The chapter is structured as follows. We start by introducing the formal
model of top-down tree transducers. Thereafter, we consider a special case of
uniformization in the class of top-down tree transformations, namely the case
that a uniformization of a D↓TA-recognizable relation with D↓TA-recognizable
domain can be realized by a top-down transducer which simply re-labels the
nodes of an input tree. Subsequently, we consider more general setups. Thereby
we distinguish between uniformization with and without input validation.

4.1 Top-Down Tree Transducer

Tree transducers are a generalization of word transducers. As top-down tree
automata, a top-down tree transducer reads the tree from the root to the leafs,
but can additionally in each computation step produce finite output trees which
are attached to the already produced output. For an introduction to tree trans-
ducers the reader is referred to [CDG+07].

17



18 Chapter 4. Uniformization by Top-Down Tree Transducers

Definition 4.1 (TDT). A top-down tree transducer is of the form T =
(Q,Σ,Γ, Q0,∆) consisting of a finite set of states Q, a finite input alphabet
Σ, a finite output alphabet Γ, a set Q0 ⊆ Q of initial states, and ∆ is a finite
set of transition rules of the form

q(f(x1, . . . , xi))→ u[q1(xj1), . . . , qn(xjn)],

where f ∈ Σi, u is an n-context over Γ, q, q1, . . . , qn ∈ Q and j1, . . . , jn ∈
{1, . . . , i}, or

q(x1)→ u[q1(x1), . . . , qn(x1)] (ε-transition),

where u is an n-context over Γ and q, q1, . . . , qn ∈ Q.

For our purposes it is more convenient to use a non-standard formalization
of configurations, as this will simplify the reading of the proofs.

Definition 4.2 (Configuration). A configuration of a top-down tree transducer
is a triple c = (t, t′, ϕ) of an input tree t ∈ TΣ, an output tree t′ ∈ TΓ∪Q and a
function ϕ : Dt′ → domt, where

• valt′(u) ∈ Γi for each u ∈ domt′ with i > 0 successors

• valt′(u) ∈ Γ0 or valt′(u) ∈ Q for each leaf u ∈ domt′

• Dt′ ⊆ domt′ with Dt′ = {u ∈ domt′ | valt′(u) ∈ Q}

Let c1 = (t, t1, ϕ1), c2 = (t, t2, ϕ2) be configurations of a top-down tree trans-
ducer. We define a successor relation →T on configurations by:

c1 →T c2 :⇔



∃u ∈ domt1 with valt1(u) = q and ϕ1(u) = v
∃q(valt(v)(x1, . . . , xi))→ w[q1(xj1), . . . , qn(xjn)] ∈ ∆
t2 = s · w[q1, . . . , qn] with s = t1[◦/u]
ϕ2 with Dt2 = Dt1 \ {u} ∪ {ui | u v ui, valt2(ui) = qi, 1 ≤ i ≤ n}
∀u′ ∈ Dt1 \ {u} : ϕ2(u′) = ϕ1(u′)
∀ui, u v ui, valt2(ui) = qi : ϕ2(ui) = v.ji

if a non-ε-transition was applied, or

c1 →T c2 :⇔



∃u ∈ domt1 with valt1(u) = q and ϕ1(u) = v
∃q(x1)→ w[q1(x1), . . . , qn(x1)] ∈ ∆
t2 = s · w[q1, . . . , qn] with s = t1[◦/u]
ϕ2 with Dt2 = Dt1 \ {u} ∪ {ui | u v ui, valt2(ui) = qi, 1 ≤ i ≤ n}
∀u′ ∈ Dt1 \ {u} : ϕ2(u′) = ϕ1(u′)
∀ui, u v ui, valt2(ui) = qi : ϕ2(ui) = v

if an ε-transition was applied.
Furthermore, let →∗T be the reflexive and transitive closure of →T and →n

T the
reachability relation for →T in n steps.
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Figure 4.1: The configuration c2 = (t, f(q, q), ϕ2) of T on t from Example 4.4.

A top-down tree transducer is deterministic (a DTDT) if it contains no ε-
transition and there are no two rules with the same left-hand side. Additionally,
the set of initial states is a singleton set.

Definition 4.3 (Semantics of TDTs). The relation R(T ) ⊆ TΣ × TΓ induced
by a top-down tree transducer T is

R(T ) = {(t, t′) | (t, q0, ϕ)→∗T (t, t′, ϕ′) with q0 ∈ Q0 and ϕ(ε) = ε}.

For a tree t ∈ TΣ let T (t) := {t′ ∈ TΓ | (t, t′) ∈ R(T )}.

The class of relations definable by TDTs is called the class of top-down tree
transformations.

Example 4.4 Let Σ be a ranked alphabet given by Σ2 = {f}, Σ1 = {g, h},
and Σ0 = {a}. Consider the TDT T given by ({q},Σ,Σ, {q},∆) with ∆ =

{ q(a) → a,
q(g(x1)) → q(x1),
q(h(x1)) → h(q(x1)),

q(f(x1, x2)) → f(q(x1), q(x2)) }.

For each t ∈ TΣ the transducer deletes all occurrences of g in t.
Consider t := f(g(h(a)), a). A possible sequence of configurations of T on

t is c0 →5
T c5 such that c0 := (t, q, ϕ0) with ϕ0(ε) = ε, c1 := (t, f(q, q), ϕ1)

with ϕ1(1) = 1, ϕ1(2) = 2, c2 := (t, f(q, q), ϕ2) with ϕ2(1) = 11, ϕ2(2) = 2,
c3 := (t, f(q, a), ϕ3) with ϕ3(1) = 11, c4 := (t, f(h(q), a), ϕ4) with ϕ4(11) = 111,
and c5 := (t, f(h(a), a), ϕ5). A visualization of c2 is shown in Figure 4.1.

4.2 A Restricted Uniformization Case

In this section we deal with a special case of uniformization. We only consider
D↓TA-recognizable relations with D↓TA-recognizable domain such that for each
pair (t, t′) in the relation holds that t and t′ have the same domain. In this
context, we are interested whether there exists a uniformization by a TDT such
that the transducer passes through each node and thereby relabels the node
according to the current state and input symbol at that node. This is captured
in the following definition.
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Definition 4.5 Let R be a D↓TA-recognizable relation with D↓TA-
recognizable domain such that for each (t, t′) ∈ R holds domt = domt′ . The
restricted uniformization problem is the decision problem whether there exists
a uniformization of R whose graph is recognizable by a deterministic TDT T
such that only transitions of the following form are used:

q(f(x1, . . . , xi))→ g(q1(x1), . . . , qi(xi)),

where f ∈ Σi, g ∈ Γi, and q, q1, . . . , qi ∈ Q.

For the remainder of this section, let R ⊆ TΣ × TΓ be a relation recognized
by a D↓TA A = (QA,Σ×Γ, qA0 ,∆A) and let dom(R) be recognized by a D↓TA
B = (QB,Σ, q

B
0 ,∆B) such that domt = domt′ holds for each (t, t′) ∈ R.

We now describe a decision procedure for this problem. We consider a game
between In and Out, where In can follow any path from the root to a leaf in an
input tree such that In plays one input symbol at a time and Out can react with
one output symbol.

The vertices in the game graph represented the current state of B on the
input and the current state of A on the input combined with the output. A
move of In corresponds to a direction and an input symbol, a move of Out
corresponds to the chosen output.

Formally, the game graph GA,B is of the form (VIn, VOut, E, v0), where

• VIn ⊆ 2QA×QB is the set of vertices of player In,

• VOut ⊆ VIn × Σ is the set of vertices of player Out.

• From a vertex of In the following moves are possible:

– P → ((q, p), f) for each (q, p) ∈ P and there exists (p, f, p1, . . . , pi) ∈
∆B and (q, (f, g), q1, . . . , qi) ∈ ∆A with g ∈ Γ

• From a vertex of Out the following moves are possible:

– ((q, p), f)
r→ P with P =

⋃i
j=1{(qj , pj)} if there exists a transition

r = (q, (f, g), q1, . . . , qi) ∈ ∆A and a transition (p, f, p1, . . . , pi) ∈ ∆B

• The initial vertex v0 is {(qA0 , qB0 )}.

The winning condition should express that player Out loses the game if the
input can be extended, but no valid output can be produced. This is represented
in the game graph by all P ∈ VIn such that there is (q, p) ∈ P and f ∈ Σ such
that (p, f, p1, . . . , pi) ∈ ∆B, but there exists no (q, (f, g), q1, . . . , qi) ∈ ∆A for
some g ∈ Γ. If one of these vertices is reached during a play, Out loses the
game. Let B denote the set of these bad vertices which Out should avoid.
Hence, we specify the game GA,B = (GA,B, V \B) as a safety game for Out.

The following example demonstrates the presented construction for a simple
relation.



4.2 A Restricted Uniformization Case 21

{(q0, p)}

(q0, p), a (q0, p), f

∅ {(qF , p)} {(q, p)}

(qF , p), a (qF , p), f (q, p), a(q, p), f

b f g

b f, g gf

Figure 4.2: The game graph GA,B constructed from the D↓TAs A and B from
Example 4.6. A possible winning strategy for Out in GA,B is emphasized in the
graph.

Example 4.6 Let Σ be an input alphabet given by Σ2 = {f} and Σ0 = {a}
and let Γ be an output alphabet given by Γ2 = {f, g} and Γ0 = {b}. Consider
the relation R defined by

R := {(t, t′) ∈ TΣ × TΓ | (domt = domt′) ∧ ∀u ∈ domt with valt(u) = a ∧ |u| >
0 : ∃v @ u s.t.valt′(u) = f}.

The relation contains exactly the pairs of trees (t, t′) of same size such that on
every path through t′ occurs an f if h(t′) > 0.

Obviously, the relation and the domain are D↓TA-recognizable. It is easy to
see that the D↓TA B = ({p},Σ, p,∆B) with ∆B = {(p, a), (p, f, p, p)} recognizes
dom(R) and the D↓TA A = ({q0, q, qF },Σ×Γ, q0,∆A) with ∆A = {(q0, (a, b)),
(q0, (f, f), qF , qF ), (q0, (f, g), q, q), (q, (f, f), qF , qF ), (q, (f, g), q, q), (qF , (a, b)),
(qF , (f, f), qF , qF ), (qF , (f, g), qF , qF )} recognizes R.

The corresponding game graph GA,B is depicted in Figure 4.2.

We show that the game is constructed such that a TDT uniformizing R can
be built up from a winning strategy of Out and vice versa.

Lemma 4.7 The relation R can be uniformized by a restricted TDT in the
sense as described above if, and only if, Out has a winning strategy in the safety
game GA,B = (GA,B, V \B).

Proof. Assume Out has a winning strategy in GA,B, then Out has also a positional
one. A positional winning strategy can be represented by a function σ : VOut →
∆A. However, it is more convenient to write σ : v

r7→ w instead of σ(v) =
r for (v, w) ∈ E and r ∈ ∆A as the former notation directly indicates the
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subsequently reached vertex of In. We construct a deterministic TDT T =
(Q,Σ,Γ, q0,∆) from σ as follows:

• Q := VIn is the set of states, with q0 := (qA0 , q
B
0 ) as initial state, and

• ∆ is the transition relation build as follows:

– For each σ : ((q, p), f)
r7→ P with r = (q, (f, g), q1, . . . , qi) ∈

∆A and (p, f, p1, . . . , pi) ∈ ∆B add (q, p)(f(x1, . . . , xi)) →
g((q1, p1)(x1), . . . , (qj , pj)(xj)) to ∆, and

– for each σ : ((q, p), a)
r7→ ∅ with r = (q, (a, b)) ∈ ∆A and (p, a) ∈ ∆B

add (q, p)(a)→ b to ∆.

We now verify that T defines a uniformization of R. The transitions of T
correspond to transitions of the product A×B, so it is easy to see, that R(T ) ⊆
R(A). We prove the other direction R(A) ⊆ R(T ). Let t ∈ dom(R) and ρ is
the run of B on t. We show by induction on the height of a node u ∈ domt that
there exists a configuration (t, t′, ϕ) of T such that for each u ∈ domt that is a
leaf in t′ holds

if ρ(u) = p ∈ QB, then ϕ(u) = u and valt′(u) = (q, p) for some q ∈ QA. (∗)

Clearly, from the structure of the transition rules of T we see, that for each
configuration (t, t′, ϕ) of T the function ϕ is the identity function. For the
induction base, let (t, (qA0 , q

B
0 ), ϕ) be the initial configuration. We have ρ(ε) = qB0

and valt′(ε) = (qA0 , q
B
0 ), thus the claim holds.

For the induction step, assume the claim holds for n. We consider a node
u at height n. Let ρ(u) = p, by induction hypothesis there exists a configura-
tion c = (t, t′, ϕ) such that valt′(u) = (q, p). From (q, p) ∈ Q it follows from
the construction of T that it is possible to reach a vertex P with (q, p) ∈ P
in the game graph if Out plays according to her winning strategy σ. Let
valt(u) = f ∈ Σi, then there exists a transition (p, f, p1 . . . , pi) ∈ ∆B. Since
σ is a winning strategy and P is not a bad vertex, a vertex (q, p), f can be
reached in a game played according to σ. Hence, there exists a transition
(q, p)(f(x1, . . . , xi))→ g((q1, p1)(x1), . . . , (qi, pi)(xi)) ∈ ∆ for σ(((q, p), f))

r7→ P
with r = (q, (f, g), q1, . . . , qn) ∈ ∆A by construction. Let c′ = (t, t′′, ϕ′) denote
the successor configuration of c that results from applying the above transition.
Therefore, for the jth successor of u at height n + 1, it holds that ρ(uj) = pj
and valt′′(uj) = (qj , pj) and thus, the claim holds.

Now, for t ∈ dom(R), let t′ be an output tree such that (t, t′, ϕ) is a config-
uration of T such that (∗) holds at each leaf of t. With the same reasoning as
above in the induction step, there exists for each leaf u with valt(u) = a a transi-
tion (q, p)(a)→ b ∈ ∆. When we apply the respective transitions at the leaves,
we obtain a tree t′′ with (t, t′′) ∈ R(T ). Hence, T defines a uniformization of R.

For the other direction, we assume that R is uniformized by some DTDT
T = (Q,Σ,Γ,∆) such that ∆ only contains transitions with the restrictions
introduced in Definition 4.5. The idea is that a winning strategy for Out re-
produces the transformations of T . The moves of In induce a path x1 . . . xn of
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vertices together with an input sequence v1 . . . vn on that path through some in-
put tree t. Only this part is needed to compute the output sequence u1 . . . un of
the same length on the same path that T produces for the given input sequence.
Let ρA be the unambiguous run of A on t ⊗ T (t) and ρB be the unambiguous
run of B on t. Thus, the corresponding vertex in the game graph is ((q, p), vn)
with q = ρA(xn) and p = ρB(xn). Since T uniformizes R, there have to exist
transitions r = (q, (vn, un), q1, . . . , qi) ∈ ∆A and (p, vn, p1, . . . , pi) ∈ ∆B. Then,
we define σ such that Out moves to

⋃i
j=1(qj , pj) via the r-labeled edge that has

to exist by construction of the game graph.
To show that this defines a winning strategy for Out we show that the next

reached vertex of Out is not a bad vertex. The next move of In defines a
new path segment xn+1 and an input symbol vn+1 leading to ((qj , pj), vn+1)
for a j ∈ {1, . . . , i}. Since T uniformizes R, we know that there exists a tree
t ∈ dom(R) and output T (t) such that the path x1 . . . xn+1 through t ⊗ T (t)
is labeled with (v1, u1) . . . (vn+1, un+1) and (t, T (t)) ∈ R. Since A recognizes
R, we know that there exists a transition

(
qj , (vn+1, un+1), qj1, . . . , qji

)
∈ ∆A.

Hence, the vertex ((qj , pj), vn+1) is not in B.

�

In the following example we present a TDT that uniformizes the relation R
from Example 4.6, obtained from the winning strategy for Out in GA,B, shown
in Figure 4.2.

Example 4.8 The TDT T with initial state (q0, p) that is obtained from the
winning strategy of Out in Figure 4.2, by using the construction from Lemma
4.7, has the following transition rules:

(q0, p)(a) → b,
(q0, p)

(
f(x1, x2)

)
→ f

(
(qF , p)(x1), (qF , p)(x2)

)
,

(qF , p)(a) → b,
(qF , p)

(
f(x1, x2)

)
→ g

(
(qF , p)(x1), (qF , p)(x2)

)
.

Obviously, T uniformizes R from Example 4.6.

Together with Lemma 4.7 and the fact that a winning strategy for Out can
be effectively computed in GA,B, we obtain the following result.

Theorem 3 The restricted uniformization problem in the class of top-down tree
transformations is decidable.

4.3 Notations and Definitions

In this section, we fix some notations and definitions that will simplify the
presentation of the proofs in the following sections.

Given Σ =
⋃m
i=0 Σi, let dirΣ = {1, . . . ,m} be the set of directions compatible

with Σ. Usually, we write dir when Σ is clear from the context.
For Σ =

⋃m
i=0 Σi, the set PathΣ of labeled path over Σ is defined inductively

by:
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• ε is a labeled input path

• each f ∈ Σ is a labeled input path

• given a labeled input path π = x ·f with f ∈ Σi (i > 0) over Σ, then π · jg
with j ∈ {1, . . . , i} and g ∈ Σ is a labeled input path

For π ∈ PathΣ, we define the path path and the word lbls induced by π induc-
tively by:

• if π = ε or π = f , then path(π) = ε, lbls(π) = π

• if π = x · jf with j ∈ N, f ∈ Σ, then path(π) = path(x) · j, lbls(π) =
lbls(x) · f

The length || || of a labeled path over Σ is the length of the word induced by its
path, i.e., ||π|| = |lbls(π)|.

For π ∈ PathΣ with ||π|| = k let

T πΣ := {t ∈ TΣ | valt
(
path(π)[1 . . . (i− 1)]

)
= lbls(π)[i] for 1 ≤ i ≤ k}

be the set of trees t over Σ such that π is a prefix of a labeled path through t.
For Π ⊆ PathΣ let

TΠ := {t ∈ TΣ | ∃π ∈ Π and t ∈ T πΣ}

be the set of trees such that each tree contains a labeled path starting with π
for some π ∈ Π.

For t ∈ TΣ and u ∈ N∗, let ||t||u := max{v | u v v ∨ v v u} be the length
of a maximal path through t along u. In particular, for u = ε it holds that
||t|| = ht(t).

For R ⊆ TΣ × TΓ and π ∈ PathΣ let

Rπ := {(t, t′) ∈ R | t ∈ T πΣ}.

For a D↓TA A with state set Q and q ∈ Q, let Aq be the automaton that
results from A by using q as single initial state.

Let R ⊆ TΣ × TΓ be recognized by a D↓TA A, for q ∈ Q we define

Rπq := {(t, t′) ∈ R(Aq) | t ∈ T πΣ}.

If q = q0, then Rπq0 corresponds to Rπ, if additionally π = ε, then Rπq0 corre-
sponds to R. Note, a D↓TA that recognizes Rπq can be easily constructed from
A.

Since we will consider labeled paths through trees, it is convenient to define
the notion of convolution for labeled paths. For a labeled path x ∈ PathΣ with
||x|| > 0, let domx := {u ∈ dir∗ | u v path(x)} and valx : domx → Σ, where
valx(u) = lbls(x)[i] if u ∈ domx with |u| = i+ 1.

Let Σ,Γ be ranked alphabets and let x ∈ PathΣ, y ∈ PathΓ with path(y) v
path(x) or path(x) v path(y), then the convolution of x and y is x⊗y defined by
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domx⊗y = domx∪domy, and valx⊗y(u) = (val⊥x (u), val⊥y (u)) for all u ∈ domx⊗y,
where val⊥x (u) = valx(u) if u ∈ domx and val⊥x (u) = ⊥ otherwise, analogously
defined for val⊥y (u).

Furthermore, it is useful to relax the notion of runs to labeled paths. Let
B = (QB,Σ, q

B
0 ,∆B) be a D↓TA that recognizes a tree language over an alphabet

Σ and A = (QA,Σ⊥ × Γ⊥, q
A
0 ,∆A) be a D↓TA that recognizes a tree relation

over an input alphabet Σ and an output alphabet Γ. For B and x ∈ PathΣ, let
ρB : dir∗ → QB be the partial function with the property that

• ρB(ε) = qB0 , and

• for each u ∈ domx: if p := ρB(u) is defined and there is a transition
(p, valx(u), p1, . . . , pi) ∈ ∆B, then ρB(u.j) = pj for all j ∈ {1, . . . , i}.

Similarly for A and x ∈ PathΣ, y ∈ PathΓ such that x ⊗ y is defined. Let
i ∈ dir, x ∈ PathΣ, y ∈ PathΓ such that x⊗ y is defined with path(x) = u and
path(x⊗ y) = v. We write

B : qB0
x−→i p,

if p := ρB(ui) is defined. Analogously, we write

A : qA0
x⊗y−−→i q,

if q := ρA(vi) is defined. We write B : qB0
x−→ FB resp. A : qA0

x⊗y−−→ FA
if (ρB(u), valx(u)) ∈ ∆B resp. (ρA(v), valx⊗y(v)) ∈ ∆A to indicate that the
(partial) run on the respective labeled path is accepting.

Let R ⊆ TΣ × TΓ be the relation recognized by a DTDT T . Sometimes, we
are interested in the output that T produces for an arbitrary tree, which might
e.g., be part of a valid input tree. Therefore, for a tree t, we redefine T (t).
Given an arbitrary tree t ∈ TΣ or t ∈ SΣ, then let

T (t) := {t′ | (t, qT0 , ϕ0)→T (t, t′, ϕ)∧¬∃(t, t′′, ϕ′) such that (t, t′, ϕ)→T (t, t′′, ϕ′)}

be the final transformed output of T for the input tree t. If t ∈ dom(R), then
T (t) is t′ with (t, t′) ∈ R as previously defined in the introduction to TDTs.

Also, sometimes it is sufficient to consider only the output that is mapped
to a certain path. For an input tree t ∈ TΣ or t ∈ SΣ and a path u ∈ dir∗, we
define

outT (t, u) := {π ∈ PathΓ | T (t) ∈ T πΓ ∧ (path(π) v u ∨ u v path(π))}

to be the set of labeled paths through the output tree T (t) along u. Note, that
if ||T (t)||u < |u|, then outT (t, u) is a singleton set.

4.4 Uniformization Without Input Validation

As mentioned in the introduction to this chapter, here we consider the question
whether a relation has a uniformization by a top-down tree transducer such that
the transducer may behave arbitrarily on trees that are not in the domain of
the considered relation.
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Definition 4.9 Let R ⊆ TΣ × TΓ denote a D↓TA-recognizable relation with
D↓TA-recognizable domain. The uniformization problem without input valida-
tion is the decision problem whether there exists a TDT T such that R(T )∩R
defines a uniformization of R.

The goal of this section is to provide a decision procedure for the aforemen-
tioned question. Again, we will reduce this question to the existence of winning
strategies in a safety game. To begin with, we investigate the connection be-
tween input and (delayed) output under the assumption that the input tree is
valid. Afterwards, we consider relations that have a uniformization by trans-
ducers with bounded output delay and then extend our results to transducers
with unbounded output delay.

While in the previous section the considered relations as well as the consid-
ered transducers were very restricted, we now consider a more general setup.
That means, a transducer possibly reaches configurations where read input sym-
bol and produced output symbol are not only of different arity, but might also
occur on different nodes. In these cases, as the transducer can not read the
whole input, because of either the different arity or the introduced delay, it
is necessary that fixed output trees exist matching all possible unread input
variants.

Later, we will frequently use the following result that shows that it is de-
cidable for a given regular set of input trees whether there exits a single fixed
matching output tree.

Lemma 4.10 Let R ⊆ TΣ×TΓ denote a D↓TA-recognizable relation with D↓TA-
recognizable domain. Let A = (QA,Σ⊥×Γ⊥, q

A
0 ,∆A) be a D↓TA that recognizes

R, and let B = (QB,Σ, q
B
0 ,∆B) be a D↓TA that recognizes dom(R) and let

q ∈ QA, p ∈ QB. It is decidable whether the following holds:

(a) ∀t ∈ T (Bp) : t⊗⊥ ∈ T (Aq),

(b) ∃t′ ∈ TΓ : ⊥⊗ t′ ∈ T (Aq),

(c) ∃t′ ∈ TΓ ∀t ∈ T (B) : (t, t′) ∈ R.

Proof.

Part (a). Let AΣ×⊥
q |TΣ

= (QA,Σ, q,∆
′
A) be the automaton that results from

Aq by using
(⋃m

i=1(QA × (Σ×⊥)×QiA)
)
∩∆A projected onto

⋃m
i=1(QA×Σ×

QiA) as new transition set ∆′A. It holds that ∀t ∈ T (Bp) : t ⊗ ⊥ ∈ T (Aq) if,
and only if, T (Bp) ⊆ T (AΣ×⊥

q |TΣ
). Note, if (q, p) is a reachable state in the

product automaton A×B, then it always holds that dom(T (Aq)) ⊆ T (Bp). In
this case, we can test whether T (Bp) = T (AΣ×⊥

q |TΣ
) holds.

Part (b). LetA⊥×Γ
q |TΓ

= (QA,Γ, q,∆
′
A) be the automaton that results fromAq

by using
(⋃m

i=1(QA × (⊥× Γ)×QiA)
)
∩∆A projected onto

⋃m
i=1(QA×Γ×QiA)

as new transition set ∆′A. It holds that ∃t′ ∈ TΓ : ⊥⊗ t′ ∈ T (Aq) if, and only
if, T (A⊥×Γ

q |TΣ
) 6= ∅.
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Part (c). First, we construct an N↓TA Ā for R. Secondly, we define the N↓TA
C = (QĀ × (QB ∪· p⊥),Σ⊥ × Γ⊥,

(
qB0 , q

Ā
0

)
,∆C) as the product automaton of

Ā × B with ∆C constructed as follows:

• For p ∈ QB, q ∈ QĀ, and f ∈ Σ such that (p, f, p1, . . . , pi) ∈ ∆B and
(q, (f, g), q1, . . . , qn) ∈ ∆Ā(

(q, p), (f, g), (q1, p1), . . . , (qi, pi), (qi+1, p⊥), . . . , (qn, p⊥)
)
∈ ∆C ,

• for p⊥, q ∈ QĀ such that (q, (⊥, g), q1, . . . , qn) ∈ ∆A(
(q, p⊥), (⊥, g), (q1, p⊥), . . . , (qn, p⊥)

)
∈ ∆C .

We obtain R(C) = {(t, t′) ∈ TΣ × TΓ | t ∈ T (B) ∧ (t, t′) /∈ R}. Let C|TΓ
be the

automaton that results from C by projection of ∆C onto
⋃m
i=1(QC × Γ ×QiC).

T (C|TΓ
) = {t′ ∈ TΓ | ∃t ∈ T (B) : (t, t′) /∈ R}. Thirdly, construct a tree

automaton C|TΓ
that recognizes the complement T (C|TΓ

) = {t′ ∈ TΓ | ∀t ∈
T (B) : (t, t′) ∈ R}. It holds that ∃t′ ∈ TΓ ∀t ∈ T (B) : (t, t′) ∈ R if, and only if,
T (C|TΓ

) 6= ∅.

�

4.4.1 Bounded Output Delay

Let T be an arbitrary TDT and let c = (t, t′, ϕ) be a configuration of T . Con-
sider a node u ∈ Dt′ with ϕ(u) = v. For arbitrarily formed transitions, it can
occur that |u| 6= |v|. If |u| < |v|, then the transducer has read an input sequence
and produced a shorter output sequence. In this case, we say the transducer
has an output delay of |v| − |u|. If no configuration is reachable such that the
delay is greater than some n ∈ N, then the output delay is bounded to n. In
addition, if configurations such that |u| > |v| occur, then the transducer has
produced a longer output sequence than the read input sequence.

The following lemma shows that we can focus on the construction of TDTs
where the read input and produced output lie on the same path if only valid
input trees are considered. The basic idea behind the proof is that D↓TAs can
not compare information on divergent paths.

Lemma 4.11 Let R be a D↓TA-definable relation. If R is uniformized by a
TDT T without input validation in which the output delay is bounded, then R
can be uniformized by a TDT T ′ without input validation in which the output
delay is bounded such that for each t ∈ dom(R) and each reachable configuration
(t, t′, ϕ) holds:

∀u ∈ Dt′ with ϕ(u) = v : u v v.

Proof. Let A be a D↓TA that recognizes R. The proof is split in two parts.
First, we show that we can keep track of the current state of A on the combined
part of input and output in the state set of T as long as input and output are on
the same path. Secondly, we show that if we can not keep track of the current
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state of A, because the path of input and output diverge, then it is also not
necessary to keep track. Instead a fixed output tree can be produced.

We assume that in T the output delay is bounded to K. Furthermore, we
assume that the output never overtakes the input, i.e., no configuration with
|u| > |v| is reached. Otherwise, if the length of the output that can become
ahead of the input is bounded in T , then the output can always be postponed
until a leaf is reached as described in Remark 4.12. If the length of the output
that can become ahead of the input is unbounded, then it becomes possible to
drop postponed output such that input and output are one same level again.
However, we will not present this case, because we will later see that it is not
necessary to consider TDTs in which the output overtakes the input.

As long as u v v holds, it is possible to keep track in T in which state A
is at the vertex u. For that, we define a cross-product of T and A inductively.
Since T can introduce output delay, the states of the cross-product also have to
keep track of the part of the input currently ahead. Starting in T from s0 and
in A from q0 each rule

s0(f(x1, . . . , xi))→ g(w1, . . . , wj),

where wk ∈ TΓ or wk = sk(xk), sk ∈ QT for all 1 ≤ k ≤ j is replaced by

(s0, q0)(f(x1, . . . , xi))→ g(w′1, . . . , w
′
j),

where w′k = wk if wk ∈ TΓ, or w′k = (sk, qk)(xk) if wk = sk(xk) and
(q0, (f, g), q1, . . . , qn) ∈ ∆A, and each rule

s0(f(x1, . . . , xi))→ s′(xk)

is replaced by

(s0, q0)(f(x1, . . . , xi))→ (s′, q0f )(xk).

Generally, for some state (s, qf1j1...fm) each rule

s(f(x1, . . . , xi))→
g1(t11, . . . , t1(j1−1), ◦, t1(j1+1), . . . , t1n1) · . . . ·
gk(tk1, . . . , tk(jk−1), s

′(xjm), tk(jk+1), . . . , tknk
),

where tuv ∈ TΓ for all u, v such that 1 ≤ u ≤ k, 1 ≤ v ≤ nu is replaced by

(s, qf1j1...fm)(f(x1, . . . , xi))→
g1(t11, . . . , t1(j1−1), ◦, t1(j1+1), . . . , t1n1) · . . . ·
gk(tk1, . . . , tk(jk−1), (s

′, q′fk+1jk+1...fmjmfn
)(xjm), tk(jk+1), . . . , tknk

),

where (qi−1
ji−1

, (fi, gi), q
i
1, . . . , q

i
ji
, . . . , qini

) ∈ ∆A for all 1 ≤ i ≤ k such that q0
j0

= q,
qkjk = q′ and fn = f .

Note, if k = m + 1, then the read input and produced output are on the
same tree level afterwards. This means, that any successor of gk can be of the
form s′′(xl) for some s′′ ∈ QT if it is the lth successor instead of a fixed tree tkl.
Furthermore, each rule
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s(f(x1, . . . , xi))→ s′(xk)

is replaced by

(s, qf1j1...fm)(f(x1, . . . , xi))→ (s′, qf1j1...fmjmfn)(xk),

where jm = k and fn = f .
Obviously, if the right-hand side of a transition is a fixed tree, only the

left-hand side has to be changed.
Now we consider the case that at some point u v v does not hold. We show

that we can construct a transducer such that u v v always holds by defining the
cross-product T × A in the following way if it cannot be constructed as above.

Let T uniformize R such that the property is not fulfilled. Then there exists
t ∈ dom(R) such that (t, s0, ϕ) →∗T (t, t1, ϕ1) →T (t, t2, ϕ2) and for (t, t2, ϕ2)
the property does not hold for the first time. Thus, there exists u ∈ domt1 with
ϕ1(u) = v and u v v, and in the next step there exists some u′ ∈ domt2 with
ϕ2(u′) = v′ and u @ u′ such that u′ 6v v′.

Let the successor configuration (t, t2, ϕ2) of (t, t1, ϕ1) be the result of apply-
ing the following transition

s(f(x1, . . . , xn))→ w[. . . , si(xji), . . . ],

where f ∈ Σi, w is a context over Γ, s, si ∈ QT and ji ∈ {1, . . . , n} such that
si(xji) causes the problem, i.e., ϕ2(u′) = v′ with v′ = v.ji and valt2(u′) = si.

Let t′ := T (t) be the final output of T for the given input t with (t, t′) ∈ R.
Since u v v, we can compute the output of T × A for t with the already given
rules up to u. This means there is a configuration (t, t′1, ϕ

′
1) of T ×A reachable

that only differs from (t, t1, ϕ
′) in the states at the leaves in t1 which also

contain the information of A and the part of the input ahead. Let valt′1(u) =
(s, qf1j1...fm), for this state we use the modified rule

s(f(x1, . . . , xn))→ w[. . . , t′|u′ , . . . ],

to construct the corresponding rule in T × A by using t′|u′ as fixed output
instead of si(xji). We now show the correctness of this construction. Since
valt′1(u) = (s, qf1j1...fm), we know that the unique run ρ of A on t ⊗ t′ yields
ρ(u) = q and thus we can also compute ρ(u.j) = q′ with u.j v u′ and j 6= j1.
Towards a contradiction, assume it is not possible to choose a fixed output for
the above rule. Then there exists some talt ∈ TΣ such that t[◦/u′] ·talt ∈ dom(R)
and (t|uj [◦/u′] · talt)⊗ (t′|uj [◦/u′] · t′|u′) /∈ T (Aq′). Consider the modified input
tree tin that results from t by replacing t|u′ by talt, i.e., tin := t[◦/u′] · talt which
is also in the domain of R. Due to domtv′ ∩ domtu′ = ∅, we can conclude that
the original automaton T on tin still produces t′|u′ which is then mapped to u′,
i.e., T (tin)|u′ = T (t)|u′ = t′|u′ . Since T uniformizes R, we obtain (t|uj [◦/u′] ·
talt)⊗ (t′|uj [◦/u′] · t′|u′) ∈ T (Aq′). This is a contradiction.

The construction of T ×A can be continued as described above. Eventually,
it is finished because all components of T and A are finite, and additionally the
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delay of T is bounded to K which guarantees that the state space of T × A is
also finite.

We have seen that we can construct a transducer T ′ := T ×A as described
above such that for each t ∈ dom(R) and each reachable configuration (t, t′, ϕ)
of T ′ holds ∀u ∈ Dt′ with ϕ(u) = v : u v v.

�

The following remark shows that if at one point the output becomes ahead
of the input, then it is possible to postpone the output such that it is produced
at some point later in time. We will see that postponing the output is enough
for our purposes.

Remark 4.12 Given n ∈ N and a TDT T such that for each t ∈ TΣ and each
reachable configuration (t, t′, ϕ) of T holds:

∀u ∈ Dt′ with ϕ(u) = v : u v v or v v u.

Then, there also exists an equivalent TDT T ′ such that for each t ∈ TΣ and
each reachable configuration (t, t′′, ϕ′) of T ′ holds:

∀u ∈ Dt′′ with ϕ′(u) = v : u v v.

Proof. Let T = (Q,Σ,Γ, q0,∆) be a DTDT and let c1 = (t, t1, ϕ1), c2 =
(t, t2, ϕ2) be configurations of T with c1 →T c2 resulting from the application
of a transition r. Thereby producing output at u ∈ Dt1 with ϕ1(u) = v such that
u v v and there exists at least one u′ ∈ Dt2 such that u @ u′ and ϕ2(u′) @ u′

with
r = q(f(x1, . . . , xi))→ w[q1(xj1), . . . , qn(xjn)] ∈ ∆,

where f ∈ Σi, w is an n-context over Γ, j1, . . . , jn ∈ {1, . . . , n} and q, q1, . . . , qn ∈
Q. Consider j ∈ {1, . . . , n} and f ∈ Σi (i ≥ 0), and let

rjf = qj(f(x1, . . . , xi))→ zjf [. . . ] ∈ ∆

be all transitions that possibly could be applied afterwards to reach a successor
configuration of c2.

The idea is to split the output of r such that at first only the output up to v
is produced and the rest of the output is passed on to the successor transitions.
Without loss of generality, we assume that for each u′ ∈ Dt2 with u @ u′ holds
ϕ2(u′) @ u′. For the formal construction, consider r from above. By assumption,
the right-hand side can be written in the following form

s · g
(
w1[q11(xj1), . . . , q1i1(xj1)], w2[q21(xj2), . . . , q2i2(xj2)], . . .

. . . , wm[qm1(xjm), . . . , qmim(xjm)]
)
,

where s ∈ SΓ, g ∈ Γm, w1, . . . , wm are contexts over Γ, and q11(xj1), . . . ,
qmim(xjm) = q1(xj1), . . . , qn(xjn) such that for s′ := t1[◦/u]·s holds vals′(v) = ◦.
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Note that a right-hand side that does not follow this form leads to some u′ ∈ Dt2

with u′ 6v ϕ2(u′), but ϕ2(u′) 6@ u′. We replace r by a new rule r′ build as follows.

r′ := q(f(x1, . . . , xi))→ s · g(qw1(xj1), . . . , qwm(xjm)),

with {qw1 , . . . , qwm}∪· Q, and for each newly added state qwk
and each f ∈

Γi (i ≥ 0) we introduce a new rule

r′wkf
:= qwk

(f(x1, . . . , xi))→ wk[z(k1)f [. . .], . . . , z(kik)f [. . .]].

For the correctness of the construction, let c3 = (t, t3, ϕ3) be the configura-
tion with c1 →T c2 →∗T c3 that is reached by:

1. Given u, v such that v is on the same tree level or deeper as u with ϕ(u) =
v, valt1(u) = q, and valt(v) = f holds, then the transition r is applied and
produces output at u. This yields c2.

2. For each u′, v′, such that u @ u′ and ϕ2(u′) = v′, valt2(u) = qj , and
valt(v′) = f holds, the transition rjf is applied producing output at u′.
This eventually yields c3.

It is easy to see that in the altered transducer T ′ still c1 →∗T ′ c3 holds. Now, first
r′ is applied, thereby only output up to v is produced. That is for each u′ with
u @ u′, ϕ2(u′) = v′ as above holds v′ = u′. Afterwards it is only possible to use
a newly added transition r′wkf

to produce output at u′ for the corresponding v′

with valt(v′) = f . By applying the respective transitions r′wkf
the configuration

c3 is eventually reached.
By replacing r as presented above, we have postponed the output. The same

method can be used on the transitions r′wkf
to postpone the output further. This

can be continued as long as desired in order to postpone the output further by
adding new rules to the transition relation. Eventually, as the transition relation
has to be finite, the postponed output is produced.

�

The following example demonstrates this procedure.

Example 4.13 Let Σ be a ranked alphabet given by Σ1 = {f, g}, and Σ0 =
{a}. Consider the TDT T given by ({s},Σ,Σ, {s},∆) with ∆ =

{ s(a) → a,
s(g(x1)) → g(s(x1)),
s(f(x1)) → f(g(s(x1))) }.

By applying the last transition the output becomes ahead of the input. Assume
we want to postpone the output once, then the construction presented in Remark
4.12 results in the following modified set of transitions with an additional new
state s′:
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{ s(a) → a,
s(g(x1)) → g(s(x1)),
s(f(x1)) → f(s′(x1)),
s(f(x1)) → f(g(s(x1)))

s′(a) → g(a),
s′(g(x1)) → g(g(s(x1))),
s′(f(x1)) → g(f(g(s(x1)))) }

Now that we have presented some results as preparation, we are ready to
prove the following theorem.

Theorem 4 Given K > 0, it is decidable whether a given D↓TA-recognizable
relation with D↓TA-recognizable domain has a uniformization without input val-
idation by a top-down tree transducer with output delay bounded to K.

To solve the above decision problem, we again consider a safety game be-
tween In and Out. The procedure is similar to a decision procedure presented in
[CL12], where the question whether a uniformization of an automatic word rela-
tion by a subsequential transducer exists, is reduced to the existence of winning
strategies in a safety game. Let us recall the safety game presented in Section
4.2, we basically extend the game graph such that the vertices can additionally
keep track of the input that is ahead, which is bounded to K. Player In can
play valid inputs and Out can either react with output, or delay the output and
react with a direction in which In should continue with his input sequence.

Given alphabets Σ,Γ, let R ⊆ TΣ × TΓ denote a relation recognized by a
D↓TA A = (QA,Σ⊥ × Γ⊥, q

A
0 ,∆A) and let the domain of R be recognized by a

D↓TA B = (QB,Σ, q
B
0 ,∆B). Formally, the game graph GKA,B is constructed as

follows.

• VIn ⊆ {
(
(q, p), πj

)
∈ (QA ×QB)× PathΣ · dirΣ | ‖π‖ ≤ K,π ∈ PathΣ, j ∈

dirΣ} ∪ 2QA×QB is the set of vertices of player In

• VOut ⊆ {
(
(q, p), π

)
∈ (QA×QB)×PathΣ | ‖π‖ ≤ K} is the set of vertices

of player Out

• From a vertex of In the following moves are possible:

–
(
(q, p), πj

)
→
(
(q, p), πjf

)
for each f ∈ Σ such that B : p

π−→j p
′ and

there exists (p′, f, p1, . . . , pi) ∈ ∆B if ‖π‖ < K

– P →
(
(q, p), f

)
for each (q, p) ∈ P and there exists (p, f, p1, . . . , pi) ∈

∆B and (q, (f, g), q1, . . . , qn) ∈ ∆A with g ∈ Γ⊥

• From a vertex of Out the following moves are possible:

–
(
(q, p), f

) r→ P if f ∈ Σ is i-ary, g ∈ Γ⊥ is j-ary and there ex-
ists a transition r = (q, (f, g), q1, . . . , qn) ∈ ∆A and a transition
(p, f, p1, . . . , pi) ∈ ∆B such that if
∗ j ≤ i: for all t ∈ T (Bpk) : t⊗⊥ ∈ T (Aqk) for all i < k ≤ j, then
P = {(q1, p1), . . . , (qj , pj)}, and if
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∗ j > i: there exist trees ti+1, . . . , tj ∈ TΓ⊥ such that ⊥ ⊗ tk ∈
T (Aqk) for all i < k ≤ j, then P = {(q1, p1), . . . , (qi, pi)}

–
(
(q, p), πj′f ′

) r→
(
(q′, p′), π′j′f ′

)
for each g ∈ Γ⊥ such that π =

fjπ′, there is (p, f, p1, . . . , pi) ∈ ∆B with p′ = pj and there is r =
(q, (f, g), q1, . . . , qn) ∈ ∆A with q′ = qj , and for each k 6= j with
k ∈ {1, . . . , n} holds
∗ if k ≤ rk(f), rk(g), then ∃t′ ∈ TΓ∀t ∈ T (Bpk) : t⊗ t′ ∈ T (Aqk)

∗ if rk(g) < k ≤ rk(f), then ∀t ∈ T (Bpk) : t⊗⊥ ∈ T (Aqk)

∗ if rk(f) < k ≤ rk(g), then ∃t′ ∈ TΓ : ⊥⊗ t′ ∈ T (Aqk)

–
(
(q, p), πjf

)
→
(
(q, p), πjfj′

)
for each j′ ∈ {1, . . . , i} for f ∈ Σi if

‖πjf‖ < K

• The initial vertex is {(qA0 , qB0 )}

Note that the game graph can effectively be constructed, because Lemma 4.10
implies that it is decidable whether the edge constraints are satisfied.

The winning condition should express that player Out loses the game if the
input can be extended, but no valid output can be produced. This is represented
in the game graph by a set of bad vertices B that contains

• all P ∈ VIn such that there is (q, p) ∈ P and f ∈ Σ such that
(p, f, p1, . . . , pi) ∈ ∆B, but there exists no (q, (f, g), q1, . . . , qn) ∈ ∆A for
some g ∈ Γ⊥, and

• all vertices of Out with no outgoing edges.

If one of these vertices is reached during a play, Out loses the game. Thus, we
define GKA,B = (GKA,B, V \B) as safety game for Out.

Example 4.14 Let Σ be given by Σ1 = {f, g} and Σ0 = {a}. We consider the
relation R = TΣ × TΣ and construct a game graph for R without output delay,
i.e., K = 1. Therefore, let B recognize dom(R) with only one state {p}, and R
is recognized by A = ({q0, q1, q2},Σ⊥ × Σ⊥, q0,∆A) with ∆A =

{
(
q0, (a, a)

)
,
(
q0, (σ1, σ2), q0

)
,
(
q0, (σ1, a), q1

)
,
(
q0, (a, σ1), q2

)
| σ1, σ2 ∈ Σ1}

∪ {
(
q1, (f,⊥), q1

)
,
(
q1, (g,⊥), q1

)
,
(
q1, (a,⊥)

)
}

∪ {
(
q2, (⊥, f), q2

)
,
(
q2, (⊥, g), q2

)
,
(
q2, (⊥, a)

)
}.

The result of the construction is shown in Figure 4.3.

The following two lemmata show that from the existence of a winning strat-
egy a top-down tree transducer without input validation that uniformizes the
relation can be obtained and vice versa.

Lemma 4.15 If Out has a winning strategy in GKA,B, then the relation R has a
uniformization without input validation by a TDT in which the output delay is
bounded to K.
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{(q0, p)}

(q0, p), f (q0, p), g (q0, p), a

∅

a
a

a

f, g
f, g

Figure 4.3: The game graph G1
A,B obtained from the D↓TAs A and B from

Example 4.14.

Proof. Assume that Out has a winning strategy in the safety game GKA,B, then
there is also a positional one. We can represent a positional winning strategy
by a function σ : VOut → ∆A ∪ dir, because Out either plays one output sym-
bol (corresponding to a unique transition in ∆A), or a new direction for an
additional input symbol.

We construct a deterministic TDT T = (Q,Σ,Γ, q0,∆) from such a posi-
tional winning strategy σ as follows:

1.
(
(q, p), πj

)
∈ Q for each

(
(q, p), πjf

)
∈ VOut

2. q0 := (qA0 , q
B
0 )

3. For each σ :
(
(q, p), f

) r7→ P with r = (q, (f, g), q1, . . . , qn) ∈ ∆A and
(p, f, p1, . . . , pi) ∈ ∆B:

(a) add (q, p)(f(x1, . . . , xi)) → g((q1, p1)(x1), . . . , (qj , pj)(xj)) to ∆ if
j ≤ i, or

(b) add (q, p)(f(x1, . . . , xi))→ g((q1, p1)(x1), . . . , (qi, pi)(xi), ti+1, . . . , tj)
to ∆ if j > i

where f ∈ Σi, g ∈ Γj and ti+1, . . . , tj ∈ TΓ chosen according to the r-edge
constraints in

(
(q, p), f

)
.

4. For each σ :
(
(q, p), πjf

)
7→
(
(q, p), πjfj′

)
add

(
(q, p), πj

)
(f(x1, . . . , xi))

→
(
(q, p), πjfj′

)
(x′j) to ∆.

If the strategy σ defines a sequence of moves of Out inside vertices of VOut, then
this corresponds to an output sequence that is produced without reading further
input. Each output of these moves can be represented by a special tree s over
Γ dependent on the used transition r. Eventually, the strategy defines a move
of Out to a node of VIn, otherwise σ is not a winning strategy. These parts of
the strategy are transformed as follows:
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5. For each
(
(q, p), πjf

) r1→ . . .
rk−1→

(
(q′, p′), π′jf

) rk→
(
(q′, p′), π′jfj′

)
add(

(q, p), πj
)
(f(x1, . . . , xi))→ s1 · . . . ·sk−1 ·

(
(q′, p′), π′jfj′

)
(x′j) to ∆, where

each si ∈ SΓ is a special tree corresponding to the edge constraints in the
ith move.

6. For each
(
(q, p), πjf

) r1→ . . .
rk−1→

(
(q′, p′), π′jf

) rk→ P add(
(q, p), πj

)
(f(x1, . . . , xi)) → s1 · . . . · sk−1 · t to ∆, where each si ∈ SΓ

is a special tree corresponding to the edge constraints in the ith move and
t is a tree constructed as described in step 3.

We now verify that T defines a uniformization without input validation of R.
Let t ∈ dom(R). We show by induction on the number of steps needed to reach a
configuration from the initial configuration (t, q0, ϕ0) that for each configuration
c = (t, t′, ϕ) such that Dt′ 6= ∅, in other words t′ /∈ TΓ, there exists a successor
configuration c′.

For the induction base, we consider the initial configuration (t, q0, ϕ0) with
q0 = (qA0 , q

B
0 ) and let valt(ε) = f ∈ Σi. That means, in the game In can

move from the initial vertex {(qA0 , qB0 )} to
(
(qA0 , q

B
0 ), f

)
. Since σ is a winning

strategy, the vertex is not in the set of bad vertices and σ
((

(qA0 , q
B
0 ), f

))
de-

fines the next move. By construction there exists a rule with left-hand side
(qA0 , q

B
0 )(f(x1, . . . , xi)) in ∆. Thus, a successor configuration is reachable and

the claim holds.
For the induction step, consider a configuration cn = (t, tn, ϕn) such that

(t, q0, ϕ0) →n
T (t, tn, ϕn). Assume the claim holds for n. By induction hy-

pothesis the claim is true for cn, hence there exists a successor configura-
tion cn+1 = (t, tn+1, ϕn+1). Let Dtn+1 6= ∅, then there exists u, v with
ϕ(u) = v and valtn+1(u) =

(
(q, p), πj

)
∈ Q, valt(v) = f ∈ Σi. By construc-

tion of ∆ it follows that in a game played according to the winning strat-
egy σ a vertex

(
(q, p), πjf

)
∈ VOut is reachable. Thus σ defines the next

move, consequently there exists a corresponding transition with left hand side(
(q, p), πj

)
(f(x1, . . . , xi)) in ∆. Thus, there exists cn+2 with cn+1 →T cn+2 and

the claim holds.
From the above proof it follows that (t, q0, ϕ0)→∗T (t, t′, ϕ) with t′ ∈ TΓ, i.e.,

t′ = T (t), because in each step c→T c′ one input symbol is read. Eventually, a
leaf is reached and the output is a tree over Γ.

To show that (t, t′) ∈ R, we can show by induction on the number of steps
needed to reach a configuration c = (t, t′′, ϕ) such that there exists u ∈ Dt′′ with
valt′′(u) =

(
(q, p), πj

)
that the unique run ρA of A on t ⊗ t′ yields ρA(u) = q,

the unique run ρB of B on t yields ρB(u) = p and there exists a transition with
left-hand side (q, valt⊗t′(u)) ∈ ∆A. Further, if in the next computation step T
produces a fixed tree as output at the ith child of u, that is the output is t′|ui,
then t|ui ⊗ t′|ui ∈ T (Aqi) for qi := ρA(ui).

�

We now show the other direction.
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Lemma 4.16 If the relation R has a uniformization without input validation
by a TDT in which the output delay is bounded to K, then Out has a winning
strategy in GKA,B.

Proof. Assume that R has a uniformization without input validation by some
TDT T . A winning strategy for Out basically takes the moves corresponding to
the output sequence that T produces for a read input sequence induced by the
moves of In. To construct a winning strategy for Out, it is sufficient to visit each
vertex of Out only once. Thus, we can assume that we do not have to consider
configurations of T where the output is ahead, because we can postpone the
output as described in Remark 4.12. This has to be done at most |VOut| times,
since we only need to consider plays in order to construct the strategy such that
each vertex of Out is visited at most once. Then, Lemma 4.11 implies that R
can be uniformized without input validation by some TDT T ′ = (Q,Σ,Γ, s0,∆)
such that for a read input sequence (up to length |VOut|) the produced output
sequence lies on the same path, i.e., for each reachable configuration c = (t, t′, ϕ)
holds ϕ(u) = v with u v v for all u ∈ Dt′ .

We will construct the strategy inductively. In a play, a vertex
(
(q, p), yjf

)
is reached by a sequence of moves that describe a path xiyjf ∈ PathΣ with
x, y ∈ PathΣ, i, j ∈ dir, and f ∈ Σ. The strategy in GKA,B can be chosen such
that in every play according to the strategy for each reached vertex

(
(q, p), yjf

)
directly by a move of In holds that if T ′ reaches a configuration (t, t′, ϕ) for
some t ∈ T xiyjfΣ ∩ dom(R) with (t, s0, ϕ0) →∗T ′ (t, t′, ϕ) such that there exists
u := path(xi) ∈ Dt′ with v := path(xiyjf) and ϕ(v) = u such that the following
property holds:

• The deterministic run ρA of A on t⊗ T ′(t) yields ρA(u) = q, and

• the deterministic run ρB of B on t yields ρB(u) = p.

We show this by induction on the number of moves played by In. The initial node
in GKA,B is {(qA0 , qB0 )}, from there In moves to some

(
(qA0 , q

B
0 ), f

)
. Obviously, for

the initial configuration (t, s0, ϕ0) with ϕ0(ε) = ε for some t ∈ T fΣ ∩dom(R) the
claim holds.

For the induction step, assume the claim holds for n. After n moves of In
we reach a vertex

(
(q, p), yjf

)
of Out. Assume that there exits a configuration

c = (t, t′, ϕ) of T ′ for some t ∈ T xiyjfΣ ∩ dom(R) with u ∈ Dt′ and ϕ(u) = v as
described above. The induction hypothesis yields ρA(u) = q and ρB = p. We
distinguish two cases.

(i) Consider yj = ε, then u = v. In the next step, that leads to the successor
configuration (t, t′′, ϕ′), the transducer can produce output and advance
in the input or just advance in the input without producing output.

(a) In the former case, let valt′′(u) = g. Then, there exists a tran-
sition r = (q, (f, g), q1, . . . , qn) ∈ ∆A with f ∈ Σi, g ∈ Γj . If
j < i, we have t ⊗ ⊥ ∈ T (Ak) for all k > j. If j > i, the out-
put produced for some t ∈ T (Bpk) for all k > i is a fixed tree
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since T ′ satisfies the property of Lemma 4.11. Thus, we can choose
σ
((

(q, p), f
))

= r. The play advances to some P ∈ VIn, then In moves
to some [(qk, pk), f ]. The transition r used to reach P was of the form
s(f(x1, . . . , xi))→ g(. . . , sk(xk), . . . ). Therefore, in (t, t′′, ϕ′) we have
ϕ′(uk) = vk, ρA(vk) = qk and ρB(vk) = pk. Thus, the claim holds.

(b) In the latter case, the applied transition was of the form
s(f(x1, . . . , xi)) → s′(xk) with k ∈ {1, . . . , i}. Then we set
σ
((

(q, p), f
))

= k. The edge has to exist, since T ′ has a delay of
maximal K. The next vertex of Out that is reached is

(
(q, p), fkf ′

)
for some f ′ ∈ Σ. Obviously, in the successor configuration (t, t′′, ϕ)
holds ϕ(u) = vk, and ρA(u) = q and ρB = p. Consequently, the claim
holds.

(ii) Consider yj 6= ε, then u @ v. Again, T ′ can either produce output or just
advance in the input.

(a) In the next step T ′ produces output starting at u. Lemma 4.11
implies that u′ v v′ holds for all u′ ∈ domt′′ with ϕ′(u′) = v′ in
the successor configuration (t, t′′, ϕ′). In particular, it follows that
every output divergent from the path from u to v is a fixed tree.
Therefore, we define the strategy such that Out always chooses the
move according to the output produced along v. These moves have
to exist since T ′ uniformizes R. For each additionally to the symbol
at u processed output symbol the delay between output and input
decreases by one. In the process, the delay can either be reduced or
completely diminished.
In the first case, after processing the last output symbol, Out has
reached a vertex

(
(q′, p′), y′jf

)
and u′ @ v′. Let v′ = vk, k ∈ dir,

then Out has to move to
(
(q′, p′), y′jfk

)
, because the transducer con-

tinues to read the input from vk. Subsequently, In moves to a vertex(
(q′, p′), y′jfkf ′

)
for some f ′ ∈ Σ. Corresponding to this vertex, we

have ρA(u′) = q′ and ρB(u′) = p′ and a configuration (t, t′′, ϕ′) with
ϕ′(u′) = v′. Thus, the claim holds.
In the second case, the output catches up. Then also an output sym-
bol at v is produced, meaning that Out moves from some

(
(q′, p′), f

)
such that ρA(v) = q′ and ρA(v) = p′ to a vertex P via a transition of
the from (q′, (f, valt′′(v)), q1, . . . , qn) ∈ ∆A. From there, In moves to
some

(
(q′′, p′′), f ′

)
such that v′ = vk with k ∈ {1, . . . , i}, ρA(v′) = q′′,

ρB(v′) = p′′ with q′′ = qk and p′′ = pk. Hence, the claim holds.
(b) Otherwise, if no output is produced, the applied transition was of the

from s(f(x1, . . . , xi)→ sk(xk). Then we set σ
((

(q, p), yf
))

= k. The
edge has to exist, since T ′ has a delay of maximal K. Obviously, the
claim is true for (t, t′′, ϕ′) with ϕ′(u) = vk.

We can conclude that the statement always holds.
We will now describe the strategy if the sequence of moves induce a labeled

path xiyjf such that there is no configuration (t, t′, ϕ) with ϕ(v) = u and u v v.
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Since in T ′ the read input sequence and the produced output sequence are on the
same path, this is only the case if T ′ reads a prefix of xiyjf and produces a fixed
tree as output. From this point on, Out chooses the move corresponding to the
output produced along the said path. If the input sequence is longer than the
output sequence, then, after all output is processed, the moves corresponding
to ⊥ are taken.

To show that this defines a winning strategy for Out we have to show that
no bad vertex is reached. For each vertex of Out that is reached, we defined the
strategy. Thus, each reached vertex of Out has outgoing edges. So it suffices
to verify that no vertex P is reached that contains a pair (qj , pj) such that
the input can be continued from pj , but not from qj . This is never the case,
since for every preceding vertex of Out which is of the form

(
(q, p), f

)
, we have

a configuration (t, t′, ϕ) of T ′ such that the run ρA of A on t ⊗ T ′(t) yields
ρA(v) = q and the run ρB of B on t yields ρB(v) = p. Thus, there is a transition
(p, f, p1, . . . , pi) ∈ ∆B and if a transition (pj , f

′, pj1 , . . . , pji) ∈ ∆B exists, then
also a transition (qj , (f

′, g′), qj1 , . . . , qjn) ∈ ∆A must exist.

�

As a consequence of Lemma 4.15 and Lemma 4.16 together with the fact that
a winning strategy for Out can effectively be computed in GKA,B we immediately
obtain Theorem 4.

Recall the relationR defined in Example 4.14, the TDT T from Example 4.13
uniformizes the relation. In following example, we present a possible winning
strategy for Out in the corresponding game shown in Figure 4.3 that is obtained
from T .

Example 4.17 Each time T from Example 4.13 reads an f it produces two
output symbols. To obtain a winning strategy for Out in the game shown in
Figure 4.3 each vertex of Out only has to be visited once. Thus, we can use the
modified TDT T ′ from Example 4.13 to construct the winning strategy σ by
simply transferring the outputs T ′(g) = g, T ′(f) = f , and T ′(a) = a to moves
of Out as shown in Lemma 4.16. The result is σ :

(
(q0, p), g

)
7→ (q0, (g, g), q0) ∈

∆A,
(
(q0, p), f

)
7→ (q0, (f, f), q0) ∈ ∆A, and

(
(q0, p), a

)
7→ (q0, (a, a)) ∈ ∆A.

4.4.2 Unbounded Output Delay

Previously, we considered the question whether there exists a uniformiza-
tion without input validation of a D↓TA-recognizable relation with D↓TA-
recognizable domain such that the output delay is bounded. In this section, we
will show, that this question is also decidable if the output delay is unbounded.
Similar to [CL12] for automatic word relations, we will see that if the output
delay exceeds a certain bound, then we can decide whether the uniformization
is possible or not.

The intuition is that if it is necessary to have such a long delay between
input and output, then only one path in the tree is relevant to determine an
output tree. We can define this property formally by introducing the term path-
recognizable function. Path-recognizable is meant in the sense that at each point



4.4 Uniformization Without Input Validation 39

in a path starting from the root for each input symbol there exists exactly one
direction in which the path has to be continued to select a matching output tree
for the entire input tree.

A function fΠ : TΣ → TΓ is called path-recognizable function

:⇔


∃ regular set Π ⊆ PathΣ such that∀π ∈ Π : π ∈ (Σdir)∗Σ0,
∀π, π′ ∈ Π : gcp(π, π′) ∈ (Σdir)∗,
∃ regular sets Π1, . . . ,Πn ⊆ Π with

⋃
· ni=1 Πi = Π,

∃ t1, . . . , tn ∈ TΓ such that fΠ : t 7→ ti ∀t ∈ TΠi , 1 ≤ i ≤ n.

A relation R ⊆ TΣ × TΓ is said to be uniformizable by a path-recognizable
function without input validation if

⋃n
i=1(TΠi ∩ dom(R)) × {ti} defines a uni-

formization of R.
If a relation R ⊆ TΣ × TΓ is uniformizable by a path recognizable function

without input validation, then R has a uniformization without input validation
by a TDT that first reads an unambiguous path of the input tree and then
outputs a matching output tree.

In the following we will show that there exists a bound on the output delay
that we have to consider in order to decide whether a uniformization by a path-
recognizable function is possible.

Beforehand, as preparation, we introduce a partial function that yields the
state transformations on a path induced by the input sequence of said path
together with some output sequence on the same path of same or smaller length.

For the rest of this section, let R ⊆ TΣ × TΓ be a relation recognized by a
D↓TA A = (QA,Σ⊥ × Γ⊥, q

A
0 ,∆A) and let dom(R) be recognized by a D↓TA

B = (QB,Σ, q
B
0 ,∆B). Consider a labeled path x over Σ and output y over Γ

of same or smaller length on the same path. More formally, for x ∈ PathΣ,
y ∈ PathΓ and a direction i ∈ dirΣ such that path(y) v path(x), we define the
partial function τxi,y : QA ×QB → QA with:

• τxi,y(q, p) := q′ if A : q
x⊗y−−→i q

′ and for each uj with u ∈ domx : uj 6v
path(xi) and j ∈ {1, . . . , rk

(
(val⊥x (u), val⊥y (u))

)
} holds

– if r := ρA(uj) and s := ρB(uj) are defined, then there exists t′ ∈ TΓ

such that for all t ∈ T (Bs) holds t⊗ t′ ∈ T (Ar), and
– if r := ρA(uj) is defined and ρB(uj) is undefined, then there exists
t′ ∈ TΓ such that ⊥⊗ t′ ∈ T (Ar),

where ρA is the run of Aq on x⊗ y and ρB is the run of Bp on x.

Lemma 4.10 implies, that it is decidable whether τxi,y(q) is defined. Basically, if
q′ := τxi,y(q, p) is defined, then there exists a fixed (partial) output tree s′ ∈ Syi◦Γ

such that for each input tree t ∈ T xΣ ∩ dom(R) there exists some t′ ∈ TΓ such
that t⊗ (s′ · t′) ∈ T (Aq).

We define the profile of a labeled path segment xi to be the set that contains
all possible state transformations induced by x together with some y of same or
smaller length. Formally, let x ∈ PathΣ and i ∈ dirΣ, we define the profile of xi
to be Pxi = (Pxi,=, Pxi,<, Pxi,ε) with
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• Pxi,= := {τxi,y | |y| = |x|}

• Pxi,< := {τxi,y | y 6= ε and |y| < |x|}

• Pxi,ε := {τxi,y | y = ε}.

A segment xi ∈ (ΣdirΣ)∗dirΣ of a labeled path is called idempotent if Pxi =
Pxixi.

The following remark shows that there exists a bound K such that each
labeled path of length at least K contains an idempotent factor.

Remark 4.18 There exists a bound K ∈ N such that each labeled path π ∈
PathΣ with ||π|| ≥ K contains an idempotent factor.

Proof. Ramsey’s Theorem [Ram30] yields that for any number of colors c, and
any number r, there exists a number K ∈ N such that if the edges of a complete
graph with at least K vertices are colored with c colors, then the graph must
contain a complete subgraph with r vertices such that all edges have the same
color, c.f. [Die00].

Let π ∈ PathΣ with the factorization π = f1j1 . . . jn−1fn, f1, . . . , fn ∈ Σ
and j1, . . . , jn−1 ∈ dir. Consider the complete graph G = (V,E, col) with edge-
coloring col : E → Cols, where V := {fiji | 1 ≤ i < n}, E := V × V , Cols is
the finite set of profiles and col(e) := Pfiji...fkjk if e = (fiji, fkjk) for all e ∈ E.
If there exist i, j, k ∈ N with i < j < k ≤ n such that the edges (fiji, fkjk),
(fiji, fjjj) and (fjjj , fkjk) have the same color, i.e., the respective profiles are
the same, then π has a factorization that contains an idempotent factor.

As a consequence of Ramsey’s Theorem, for r = 3 and c = |Cols|, if n ≥ K,
then π must contain an idempotent factor.

�

For the rest of this section we fix how we repeat the part of a tree that
contains an idempotent factor in a labeled path segment.

Let x, y ∈ PathΣ, i, j ∈ N with y 6= ε and yj idempotent. For any t ∈ T xiyΣ

we fix tn to be the tree that results from repeating the idempotent factor n
times. More formally, let path(x) = u and path(y) = v, we define

tn := t[◦/ui]︸ ︷︷ ︸
sx

·(t|ui[◦/uivj]︸ ︷︷ ︸
sy

)n · t|uivj︸ ︷︷ ︸
t̂

for n ∈ N.
The following Lemma shows that is decidable whether a relation has a uni-

formization by a path-recognizable function.

Lemma 4.19 For q ∈ QA p ∈ QB with dom(Rq) = T (Bp), x, y ∈ PathΣ,
i, j ∈ N with y 6= ε and yj idempotent, it is decidable whether Rxiyq can be
uniformized by a path-recognizable function fΠ without input validation such
that xiyj is a prefix of each π ∈ Π.
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Proof. Let path(x) = u, path(y) = v. First, we show if Rxiyq is uniformized
by a path-recognizable function without input validation that is recognized by
a TDT T without input validation, then Rxiyq can also be uniformized by a
path-recognizable function without input validation recognized by a TDT T ′
without input validation such that ||T ′(t)||uiv ≤ |uiv| for all t ∈ dom(Rxiyq ).

Let fΠ =
⋃n
k=1(TΠk

∩ dom(Rxiyq )) × {tk} uniformize Rxiyq such that xiyj
is a prefix of each π ∈ Π. For any k ∈ {1, . . . , n} such that ||tk||uiv > |uiv|
consider for an arbitrary xiyjz ∈ Πk ∩ T (Bp) with path(z) = w an arbitrary
tree t ∈ T xiyjzΣ ⊆ TΠk

. Since yj is idempotent, tn ∈ dom(Rxyq ). We choose n such
that ||T (tn)||ui(vj)nw < |ui(vj)n|. This is always possible, because for each t ∈
dom(Rxiyq ) holds ||T (t)|| ≤ max{||t1||, . . . , ||tn||}. Let o = outT (tn, ui(vj)nw),
and let o = o′o′′ such that ||o′|| = ||x||. Using this factorization, we now
construct some t′k ∈ TΓ with ||t′k||uivj ≤ |uivj|. Since yj is idempotent, Pyi =
P(yi)n , i.e., there exists some m ∈ PathΓ with ||m|| ≤ ||y|| such that τy,m =

τyn,o′′ . For o′m, let t′k be the corresponding tree in T o′mΓ . Thus, the run ρq of
Aq on tn⊗T (tn) results in the same state at ui(vj)n as the run ρq of A on t⊗ t′k
at uivj. Consequently, (t, t′k) ∈ R

xiy
q .

We now show that (t′, t′k) ∈ R
xiy
q for any other t′ ∈ TΠk

and thus it suffices
to replace tk with some suitable t′k to obtain a uniformization of Rxiyq such that
||t′k||uivj ≤ |uivj| for each k ∈ {1, . . . , n}. If Π is of the form L(xi(vj)+) · Π′,
then T (td) = T (tnd ) for all td ∈ dom(Rxiyq ). In this case, since T (t) = T (t′) we
obtain T (tn) = T (t′n) and it follows (t′, t′k) ∈ R

xiy
q . Otherwise, if Π is not of

this form, there exists m ∈ N such that for each n > m and each tree td ∈ T xiyΣ

holds that a configuration of T for tnd is reachable with ϕ(v) = ε and v 6v xi(yj)n
with v ∈ domtnd

. This means T (tnd ) is independent of t̂d for each n > m. Wlog,
we can assume that we have chosen n > m in order to find t′k as alternative
output for t = sx · sy · t̂. Consider z′ with xiyjz′ ∈ Πk and an arbitrary tree
t′ = s′x · s′y · t̂′ ∈ T

xiyjz′

Σ ⊆ TΠk
. Since T

(
sx · sny · t̂

)
= T

(
sx · sny · t̂′

)
, it follows

directly that (sx · sy · t̂′, t′k) ∈ R
xiy
q , but then also (s′x · s′y · t̂′, t′k) = (t′, t′k) ∈ R

xiy
q .

Secondly, we describe a process how to check whether there exists such a
uniformization. Our requirement is that for an arbitrary tree t ∈ dom(Rxiyq ) ⊆
T xiyΣ only labeled paths beginning with xiyj are relevant. Furthermore, we know
that if such a uniformization exists, then it is sufficient to consider output trees
in which the length on the path uiv is restricted to |uiv|. Therefore, let

O := {o ∈ PathΓ | path(o) v path(xiy) ∧ τxiyj,o(q, p) = r for some r ∈ QA}

be the set of possible outputs for xiy of same or shorter length that fulfill this
requirement. For each o ∈ O, let to denote a corresponding output tree. The
set O identifies a finite set of possible output trees. We first check if for each
t ∈ dom(Rxiyq ) there exists an o ∈ O such that (t, to) ∈ Rxiyq . Hence, let

T :=
⋃
o∈O
{t ∈ TΣ | (t, to) ∈ Rxiyq } =

⋃
o∈O

(
Rxiyq ∩ (TΣ × {to})

)
be the set of trees that are possible input trees for some output tree, and check
whether T = dom(Rxiyq ) holds. If this is the case, we can continue, otherwise
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there exists no uniformization by a path-recognizable function. This is decid-
able, because a tree automaton for T can be constructed from an automaton
for Rxiyq (using that regular tree languages are closed under intersection and
union).

Since the length of the output is restricted, we know that for each t with
(t, to) ∈ Rxiyq for some o ∈ O holds that (t × to)|uivj is of the form t|uivj × ⊥
and since τxiyj,o(q, p) = r ∈ QA we have t|uivj × ⊥ ∈ T (Ar). Let A⊥r denote
the automaton that results from Ar by removing every transition in which the
second component of the letter is not ⊥. Let

P :=
⋃
o∈O
{r ∈ QA | τxiyj,o(q, p) = r}

be the set of states that A can reach at uivj on the input xiy together with
some output o ∈ O.

We now consider two cases, first let dom(Rq) 6= TΣ, and secondly let
dom(Rq) = TΣ.

(i) Let dom(Rq) 6= TΣ. We define the D↓TA A′ = (2QA,Σ, P,∆
′) by a top-

down subset construction with:

• (R, f,R1, . . . , Ri) ∈ ∆′ if Rj = {rj | ∃r ∈
R with (r, (f,⊥), r1, . . . , ri) ∈ ∆A} for each j ∈ {1, . . . , i}.

If for each transition (R, f,R1, . . . , Ri) ∈ ∆′ holds that there exists at most
one j ∈ {1, . . . , i} such that there exists r, r′ ∈ Rj with T (A⊥r ) 6= T (A⊥r′),
then the output was dependent on an unambiguous path through the input.
From the fact that it is decidable whether two tree automata recognize
the same tree language, it follows that it is decidable whether Rxiyq is
uniformizable by a path-recognizable function without input validation.

(ii) Let dom(Rq) = TΣ, then it is not necessary to construct a subset au-
tomaton. Instead, it holds that if each transition in A⊥r has at most one
non-trivial successor state, then the output was dependent on an unam-
biguous path through the input. In this case, let Πr(A⊥r ) denote the
induced language of unambiguous labeled paths. If for each r ∈ P this is
the case and also the union of all induced labeled paths languages still is
a language of unambiguous labeled path, then Rxiyq is uniformizable by a
path-recognizable function. A⊥r has at most one non-trivial successor state
in each transition if, and only if, T (A⊥r ) and T (A⊥r ) are D↓TA-recognizable
(see Remark 4.20). We obtain that Rxiyq can be uniformized by a path-
recognizable function such that xiyj is a prefix of each labeled path if

• T (A⊥r ) and T (A⊥r ) are D↓TA-recognizable for all r ∈ P ,
• For a DFA C = (QC ,Σ ∪ dir,∆C , FC) that recognizes

⋃
r∈P Πr(A⊥r )

holds for all q ∈ QC and for all i, j ∈ dir :

If (q, i, q′) ∈ ∆C ∧ (q, j, q′′) ∈ ∆C , then i = j ∧ q = q′.
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This is decidable, because D↓TA-recognizability for regular tree-languages
is decidable.

A path-recognizable function can then be obtained from the induced language
of unambiguous paths in part (i) resp. part (ii).

�

The next Remark connects path-recognizable functions to the form of a
D↓TA. Intuitively, if a D↓TA recognizes a set of unambiguous labeled paths
(that defines the domain of a path-recognizable function), then the transition
structure of the D↓TA is very simple.

Remark 4.20 Let A be a D↓TA that recognizes a tree language over Σ. It holds
that T (A) and T (A) are D↓TA-recognizable if, and only if, A has at most one
non-trivial successor state in each transition.

Proof. It is easy to see that if A has at most one non-trivial successor state
in each transition, then T (A) and T (A) are D↓TA-recognizable. The idea is
that if A has at most one non-trivial successor state in each transition, then the
transitions induce a set of unambiguous labeled paths. An automaton for T (A)
only has to test the same set of labeled path in order to accept some t /∈ T (A),
since A can only fail on these unambiguous labeled paths.

We prove the other direction by contraposition. Assume that there exists a
transition with more than one non-trivial successor state, i.e., (q, f, q1, . . . , qi) ∈
∆ such that there are p, p′ ∈ {q1, . . . , qi} with t /∈ T (Ap), t′ /∈ T (Ap′) and t̂ ∈
T (Ap), t̂′ ∈ T (Ap′). Then, there exists a tree s ∈ TΣ such that s ∈ T (A) and for
the run ρ of A on s holds for an u ∈ domt : (ρ(u), valt(u), ρ(u1), . . . , ρ(ui)) ∈ ∆
with ρ(u) = q, ρ(uj) = qj for each j ∈ {1, . . . , i} and valt(u) = f . Let p := qj
and p′ := qk, then (s[◦/uj] · t̂)[◦/uk] · t′ and (s[◦/uj] · t)[◦/uk] · t̂′ are in T (A).
The path-closure of T (A) also contains (s[◦/uj] · t̂)[◦/uk] · t̂′ /∈ T (A). Thus,
T (A) is not D↓TA-recognizable.

�

The following Lemma establishes the connection between long output delay
and path-recognizable functions.

Lemma 4.21 Let q ∈ QA, p ∈ QB with dom(Rq) = T (Bp), x, y ∈ PathΣ,
i, j ∈ N with path(x) = u, path(y) = v, y 6= ε and yj idempotent. If Rxiyq is uni-
formized by a TDT T without input verification such that ||T (sx · sny )||ui(vj)n ≤
|ui| for each t ∈ T xiyΣ and for each n ∈ N, then Rxiyq can be uniformized by a
path-recognizable function without input verification.

Proof. Consider an arbitrary tree t ∈ T xiyΣ . Since ||T (sx · sny )||ui(vj)n ≤ |ui| for
each n, we can choose n such that ||T (tn)||ui(vj)n < |ui(vj)n|. With the same
argumentation as used in the proof of Lemma 4.19, we can show that there
exists t′ ∈ TΓ such that ||t′||uiv ≤ |uiv| and (t, t′) ∈ Rxiyq . There are only finitely
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many of these t′s. Now, we show that there exists a path-recognizable function
which is a uniformization without input validation of Rxiyq that maps the input
trees to a matching t′.

In Lemma 4.11 we have seen, that if the transducer is not required to validate
the input tree, the output at a node is only dependent on the input read so far,
on the same path. We use this characteristic to construct a DFA that recognizes
the set of unambiguous labeled paths through an input tree t which are relevant
to determine a suitable t′.

To choose a short output tree t′ for some input tree t the idempotent factor
is repeated as many times as necessary in t such that the produced output is
shorter than the iteration of the idempotent factor. Then, t′ is chosen according
to the output on that path. Hence, we are only interested in the labeled path
through t that is relevant for the output which is mapped to the iteration of the
idempotent factor.

The idea behind the DFA is that if the idempotent factor is repeated often
enough, say n times, then the output (on xi(yj)n) is shorter than the repetition
and thus, for some t = sx · sy · t̂ we can keep track which path of t̂ is read to
produce output on xi(yj)n in sx · sny . Therefore, we encode in the state space
of the DFA the current state of T at the read input symbol in t̂, the current
state of A as well as the current position in x resp. in the repetition of y to
which the next output of T is mapped. Since the current position in x resp. (in
a repetition of) y is known, the direction in which the input has to be pursued
can be determined from the applied transition of T .

Now, for the construction, let T = (QT ,Σ,Γ, q
T
0 ,∆T ). Furthermore, we

assume that for every tree t ∈ T xi(yj)
ny

Σ there is a configuration c = (t, t′, ϕ) of
T reachable such that there is u ∈ domt′ with ϕ(u) = ui(vj)n for every n ∈ N.
(If this is not the case, for each t the output of tn for all n ≥ m for some m ∈ N
is independent of t̂ as seen in the proof of Lemma 4.19. This means, we can
choose the same output tree for all possible input trees.) In the DFA we will use
an initial state of the form (ss, qs, πsds, ps, �) indicating that T is in the state
ss after reading xi(yj)n, A is in the state qs, the next output that is produced
has to be mapped onto πsds, the next input symbol that is read by T has to be
compatible to ps ∈ QB and � indicates that the next input symbol is currently
unknown. Let xiyj be of the form x1i1 . . . xmiy1j1 . . . ynj.

• Let sn denote the state that T reaches after reading ui(vj)n, n ∈ N.
Since QT is finite there has to be a state that occurs again and again in
the sequence s1s2 . . . . Let s be such a state, and we set ss to s ∈ QT .

• Since |outT (sx ·sny , ui(vj)n)| ≤ ui for each n ∈ N there exists some m such
that outT (sx · sny , ui(vj)n) = outT (sx · sn+1

y , ui(vj)n+1) for all n ≥ m. Let
||outT (sx · smy , ui(vj)m)|| = i and x′ is a prefix of x such that ||x′|| = i,

and choose qs ∈ QA with A : q
x′⊗outT (sx·smy ,ui(vj)m)
−−−−−−−−−−−−−−−→ii qs.

• πsds := x′′j ∈ PathΣ · dir with x′′ = xi+1ii+1 . . . xm

• ps ∈ QB with B : p
x′−→ii ps
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We are ready for the formal construction. We define the DFA C = (Q,Σ ∪
dir, qs,∆, F ) with

• state set Q := {QT × QA × P · dir × QB × (Σ ∪ {�})} with P = {π ∈
PathΣ | ||π|| ≤ ||xiy||},

• the initial state qs := (ss, qs, πsds, ps, �) as defined above,

• a set of final states F := {(s, q, πd, p, a) ∈ Q | a ∈ Σ0},

and the transition relation ∆ constructed as follows:

• For each (s, q, πd, p, �) ∈ Q: ((s, q, πd, p, �), f, (s, q, πd, p, f)) ∈ ∆ if there
exists (p, f, p1, . . . , pi) ∈ ∆B.

• For each (s, q, πd, p, f) ∈ Q with s(f(x1, . . . , xi)) → s′(xj1) ∈ ∆T :
((s, q, πd, p, f), j1, (s

′, q, πd, pj1 , �)) ∈ ∆ if there exists (p, f, p1, . . . , pi)
∈ ∆B.

• For each (s, q, πd, p, f) ∈ Q such that πd is of the form x′iyj with x′ is a
suffix of x:

((s, q, π′d′π′′d′′, p, f), ji, (s
′, q′, π′′d′′π′′′d′′′, pj1 , �)) ∈ ∆

if the following constraints are satisfied:

– there is (p, f, p1, . . . , pi) ∈ ∆B,

– there is s(f(x1, . . . , xi)) → w[. . . , s′(xji), . . . ] ∈ ∆T with
w[. . . , s′(xji), . . . ] ∈ T

z·s′(xji )
Σ∪QT (X) such that path(z) v path(π),

– there is a factorization πd = π′d′π′′d′′ such that |π′| = |z| and d′, d′′ ∈
dir with A : q

π′⊗z−−−→ji q
′,

– if π′′d′′ is of the form x′′iyj, then π′′′d′′′ = ε, else π′′′d′′′π′′d′′ = yj.

• For each (s, q, πd, p, f) ∈ Q such that there exists a factorization πd = z′z′′

with z′′z′ = yj:

((s, q, π′d′π′′d′′, p, f), ji, (s
′, q′, π′′d′′π′d′, pj1 , �)) ∈ ∆

if the following constraints are satisfied:

– there is (p, f, p1, . . . , pi) ∈ ∆B,

– there is s(f(x1, . . . , xi)) → w[. . . , s′(xji), . . . ] ∈ ∆T with
w[. . . , s′(xji), . . . ] ∈ T

z·s′(xji )
Σ∪QT (X) such that path(z) v path(π),

– there is a factorization πd = π′d′π′′d′′ such that |π′| = |z| and d′, d′′ ∈
dir with A : q

π′⊗z−−−→ji q
′.



46 Chapter 4. Uniformization by Top-Down Tree Transducers

We consider only the reachable part of C. Let r1, . . . , rn be the reachable states
of F and let Ck denote the DFA that results from C by using rk as only final
state for each k ∈ {1, . . . , n}. C accepts a set of unambiguous paths. Let
Π = {xiyj} · L(C) and Πk = {xiyj} · L(Ck) for each rk ∈ F . We show that
there exist trees t′1, . . . , t′n ∈ TΓ such that

⋃n
k=1 (TΠk

∩ T (Bp)) × {t′k} defines a
uniformization of Rxiyq .

Consider an arbitrary πk ∈ Πk and an arbitrary tree tk ∈
(
T πkΣ ∩ T (Bp)

)
.

Choose n1 such that ||T (tn1
k )|| ≤ |ui(vj)n1 | and a configuration c = (tn1

k , t
′, ϕ)

of T such that ϕ(path(πs)ds) = ui(vj)n1 and valt′(path(πs)ds) = ss is reached.
Let t′k be a matching tree as described above with ||t′k||uiv ≤ |uiv|. It holds that
(tk, t

′
k) ∈ R

xiy
q .

We now prove that (t, t′k) ∈ R
xiy
q for each t ∈ TΠk

∩ T (Bp). Let x = x′iix
′′

with ii ∈ dir. Let y = y1j1 . . . jn−1yn with y1, . . . , yn ∈ Σ and j1, . . . , jn−1 ∈ dir.
For rk = (s, q2, yi+1ji+1 . . . yiji, p, a) and path(πk) = w consider the factoriza-
tion outT (tn1

k , ui(vj)
n1w) = o1o2o3o4 such that |o1| = |x′|, |o2| = |x′′|, and

|o3| = |(yj)n1−1y1 . . . yi|. The run of A on tn1
k ⊗ T (tn1

k ) has the following prop-
erty:

A : q
x′⊗o1−−−→ii qs

x′′⊗o2−−−−→i q1
(yj)n1−1y1...yi⊗o3−−−−−−−−−−−−→ji q2

yi+1...yn⊗o4−−−−−−−−→j q3
πk⊗ε−−−→ FA.

Recall, that t′k is constructed by choosing some τyj,o such that τ(yj)n1 ,o3o4
= τyj,o.

Therefore, the run of A on tk ⊗ t′k looks as follows:

A : q
x′⊗o1−−−→ii qs

x′′⊗o2−−−−→i q1
y⊗o−−→j q3

πk⊗ε−−−→ FA.

Now, for an arbitrary t ∈ TΠk
∩ T (Bp) with t ∈ T xiyjπΣ we choose a suitable

n2 such that ||T (tn2)|| ≤ |ui(vj)n2 | and a configuration c = (tn2 , t′, ϕ) of T
such that ϕ(path(πs)ds) = ui(vj)n2 and valt′(path(πs)ds) = ss is reached. Let
path(π) = w′, and consider the output of T on the path ui(vj)n2w′. The
beginning and the end of the output on this path are the same as for tn1

k , because
in C reading π leads to the same state as πk, which means T produces the same
final output at the leaf. Thus, we have outT (tn2 , ui(vj)n2w′) = o1o

′
2o
′
3o4 with

|o′2| = |o2|. Meaning the run of A on tn2 ⊗ T (tn2) looks as follows:

A : q
x′⊗o1−−−→ii qs

x′′⊗o′2−−−−→i q
′
1

(yj)n2−1y1...yi⊗o′3−−−−−−−−−−−−→ji q2
yi+1...yn⊗o4−−−−−−−−→j q3

π⊗ε−−→ FA.

We see, that (x′′i(yj)n2−1y, o′2o
′
3o4) induces the same state transformation on A

from qs as (x′′iy, o2o). Hence, the run of A on t⊗ t′k results in

A : q
x′⊗o1−−−→ii qs

x′′⊗o2−−−−→i q1
y⊗o−−→j q3

π⊗ε−−→ FA,

i.e., (t, t′k) ∈ R
xiy
q .

�

As we have seen, if a transducer that uniformizes a relation introduces long
output delay, then the relation can also be uniformized by a path-recognizable
function.
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Now that we have completed all preparations, we present a decision pro-
cedure for the question “Given a D↓TA-recognizable relation with D↓TA-
recognizable domain, has the relation a uniformization by a TDT without input
validation?”. Therefore, we consider a similar safety game as in the previous
section on uniformization with bounded output delay. We only have to adapt
the game graph if the input sequence is ahead K steps. Let G′KA,B denote the
modified game, the modification is explained in the proof of Lemma 4.22.

Lemma 4.22 Let R ⊆ TΣ×TΓ be relation that is recognized by a D↓TA A and
its domain is recognized by a D↓TA B. R has a uniformization without input
validation if, and only if, Out has a winning strategy in the modified safety game
G′KA,B = (G′KA,B, V \B).

Proof. The proof is similar to the proofs of Lemma 4.15 and Lemma 4.16.
However, we need to make a small adjustment to the game graph GKA,B to
obtain G′KA,B. From each vertex ((q, p), π) ∈ VOut with ||π|| = K we add a move
that allows Out to stay in this vertex if there exists a factorization of π = xiyjz
with x, y, z ∈ PathΣ, i, j ∈ dir and yi is idempotent such that Rxiyq can be
uniformized by a path-recognizable function without input validation. The set
of bad vertices B for Out remains unchanged.

These changes to the game graph can be made, because if the input is K
steps ahead, then there exists a factorization of the input sequence that contains
an idempotent factor and Lemma 4.19 implies that it is decidable whether there
exists a corresponding uniformization without input validation.

Assume that Out has a winning strategy in G′KA,B, then there also exists a
positional winning strategy for Out. To construct a TDT T that uniformizes R
without input validation, we proceed as presented in the proof of Lemma 4.15
with one addition. We construct for each ((q, p), π) ∈ VOut such that ||π|| = K
and there is π = xiyjz such that Rxiyq can be uniformized by a path-recognizable
function without input validation, a TDT T xiyq that uniformizes Rxiyq . In T we
switch to T xiyq at the respective states. The correctness proof of the construction
is similar to the correctness proof in the case of bounded delay and therefore
omitted.

For the other direction, assume that R is uniformized by some TDT T
without input validation. Again, the proof is similar to the proof of Lemma
4.16. Thus, we only describe how the strategy is chosen if the output delay in
T exceeds K and omit a complete proof.

If the play reaches a vertex ((q, p), π) ∈ VOut with ||π|| = K there is a
factorization of π = xiyjz with x, y, z ∈ PathΣ, i, j ∈ dir such that yi is
idempotent. Let path(x) = u, path(y) = v and path(z) = w. We assume that
T produces no output in the next computation step, and continues to read the
input, say in direction k. Before the current vertex is reached, the play has to
visit the vertex ((q, p), ε) ∈ VIn reached by a sequence of moves of In that induce
a path π ∈ PathΣ starting from the initial vertex. Then, there is a configuration
c = (t, t′, ϕ) for each t ∈ T πΣ of T reachable such that ϕ(path(π)) = path(π).
Let s = valt′(path(π)). This means, that T starting from s uniformizes Rq.
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Consider outTs(sx · sny · sz, ui(vj)n) for n ∈ N and some sz ∈ Sz·k·◦Σ . We can
distinguish two cases.

If ||outTs(sx · sny · t̂, ui(vj)n)|| < ui(vj)n for all n ∈ N, then Lemma 4.21
implies that Rxiy can be uniformized by a path-recognizable function without
input validation. In this case, Out stays in this vertex from then on and wins.

Otherwise, there exists m ∈ N such that ||outTs(sx · smy · sz, ui(vj)n)|| ≥
ui(vj)n. Consider the factorization of outTs(sx ·smy ·sz, ui(vj)n) = o1io2jo3 such
that |o1i| = |xi| and |o2j| = (yj)m. Since yi is idempotent we can choose some

o of length K such that A : q
xiy×o1o−−−−−→j q

′ and A : q
xi(yj)m−1y×o1o2−−−−−−−−−−−→j q

′′ with
q′ = q′′. Then Out makes K moves according to o leading to some ((q′, p′), z) ∈
VOut. From there, Out takes the transitions according to o3. If |o3| < z, then
Out makes the move corresponding to taking direction k afterwards, otherwise
the next move has to be played by In after processing o3.

�

As a consequence of Lemma 4.22 and the fact that a winning strategy for
Out in G′KA,B can effectively be computed we immediately obtain our main result.

Theorem 5 It is decidable whether a D↓TA-recognizable relation with D↓TA-
recognizable domain has a uniformization without input validation by a top-down
tree transducer.

Before we turn to the next section on uniformization with input validation,
we give a short note on the domain of a given relation. Consider a D↓TA-
recognizable relation R ⊆ TΣ×TΓ such that the domain is total, i.e., dom(R) =
TΣ. Every TDT that implements a uniformization of R without input validation
in fact realizes a uniformization of R in the classical sense. Furthermore, if the
domain is total, the presented constructions in this chapter can be simplified by
leaving out the components introduced by a given domain automaton.

4.5 Uniformization with Input Validation

In the former section we assumed that a top-down tree transducer that imple-
ments a uniformization of a relation is only given valid input trees. In this
section we consider the case that a top-down transducer also has to validate the
correctness of a given input tree.

First, we will see that in this case it is necessary that read input and pro-
duced output may take divergent paths. Secondly, we ask whether a given
D↓TA-recognizable relation with D↓TA-recognizable domain has a uniformiza-
tion by a top-down tree transducer with synchronous input and output, i.e., the
transducer produces one output symbol per read input symbol. Therefore, we
provide a decision procedure – again a safety game – that takes into account that
read input and produced output may take divergent paths. Lastly, we will see
that the presented decision procedure is not suitable if we allow asynchronous
input and output.
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The following example shows that there exists a D↓TA-recognizable rela-
tion with D↓TA-recognizable domain that can be uniformized by top-down tree
transducer, but not by a top-down-tree transducer such that in every configu-
ration the position to which the produced output is mapped is a prefix of the
position of the input symbol under consideration.

Example 4.23 Let Σ be a ranked alphabet given by Σ2 = {f} and Σ0 = {a, b}.
Consider the following relation R1 ⊆ TΣ×TΣ given by {

(
f(b, t), f(t′, b)

)
| ¬∃u ∈

domt : valt(u) = b}.
Both R1 and dom(R1) are D↓TA-recognizable. The domain of the rela-

tion is recognized by the D↓TA B1 = ({p0, p1, p2},Σ, p0, {(p0, f, p1, p2), (p1, b),
(p2, f, p2, p2), (p2, a)}), and the relation is recognized by the D↓TA A1 =
({q0, q1, q2, q3, q4},Σ⊥ × Γ⊥, q0,∆A1) with ∆A1 =

{
(
q0, (f, f), q1, q2

)
}

∪ {
(
q1, (b, a)

)
,
(
q1, (b, b)

)
,
(
q1, (b, f), q3, q3

)
}

∪ {
(
q2, (a, b)

)
,
(
q2, (f, b), q4, q4

)
}

∪ {
(
q3, (⊥, a)

)
,
(
q3, (⊥, b)

)
,
(
q3, (⊥, f), q3, q3

)
}

∪ {
(
q4, (a,⊥)

)
,
(
q4, (f,⊥), q4, q4

)
}.

Intuitively, a TDT T that uniformizes R1 must read the whole right subtree t|2
of an input tree t to verify that there is no occurrence of b, and therefore has to
produce output of the same size. Clearly, the relation R is uniformized by the
following TDT T = ({q0, q1, q2},Σ,Σ, q0,∆) with ∆ =

{ q0(f(x1, x2)) → f(q1(x2), q2(x1)),
q1(f(x1, x2)) → f(q1(x1), q1(x2)),

q1(a) → a
q2(b) → b }.

However, there exists no TDT T ′ that uniformizes R such that the read input
sequence and the produced out are on the same path. Assume such a TDT T ′
exists, then for an initial state q0 there is a transition of the form q0(f(x1, x2))→
f(q1(x1), q2(x2)). It follows that T ′q2 must induce the relation {(t, b) | t ∈ TΣ ∧
¬∃u ∈ domt : valt(u) = b}. The only output that T ′q2 can produce is exactly one
b. Thus, there is a transition with left-hand side q2(f(x1, x2)) that has one of
the following right-hand sides b, q3(x1), or q3(x2). No matter which right-hand
side is chosen, dom(R(T ′q2)) must also contain trees with occurrences of b.

It follows directly from the above example that Lemma 4.11 is invalid if the
domain of a considered relation is not total.

4.5.1 Synchronous Input and Output

Before presenting the decision procedure, we define more formally what we mean
by synchronous input and output.

Definition 4.24 Consider a TDT T = (Q,Σ,Γ, Q0,∆). We say input and
output are synchronous in T if ∆ only contains transitions of the form
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q(f(x1, . . . , xi))→ g(q1(xj1), . . . , qn(xjn)),

where f ∈ Σi, g ∈ Γn, q, q1, . . . , qn ∈ Q and j1, . . . , jn ∈ {1, . . . , i}.

Now, for the rest of this section, let Σ =
⋃m
i=0 Σi be an input alphabet and

Γ =
⋃m′

i=0 Γi be an output alphabet. Consider a relation R ⊆ TΣ × TΓ such
that R and dom(R) are D↓TA-definable. Let A = (QA,Σ⊥ × Γ⊥, q

A
0 ,∆A) be

a D↓TA that recognizes R and B = (QB,Σ, q
B
0 ,∆B) be a D↓TA that recognizes

dom(R).
In the following we present a game between In and Out such that the game

graph besides the transition structure of A and B also takes the possibility into
account that a TDT can reach configurations where the produced output symbol
is not mapped to the read input symbol.

The main differences to the previous section is that the vertices in the game
graph keep track of the current state of B on the input sequence played by In
and keep track of the state of A on the combined part of all possible input
sequences and the current output sequence of Out which is not necessarily the
same as the input sequence played by In. The move constraints for Out will be
chosen such that it is guaranteed that

• the input sequence is valid, and

• the combined part of all possible input sequences together with her output
sequence is valid.

For the second part, we define a D↓TA C that is the cross-product of B × A
with an additional state to model that there is no input symbol. Let C =
(QC ,Σ⊥ × Γ⊥, q

C
0 ,∆C) consist of

• a state set QC := (QB ∪· p⊥)×QA,

• an initial state qC0 :=
(
qB0 , q

A
0

)
, and

• a transition relation ∆C constructed as follows:

– For (p, q) ∈ QC , p ∈ QB, and f ∈ Σ such that (p, f, p1, . . . , pi) ∈ ∆B
and (q(f, g), q1, . . . , qn) ∈ ∆A add(

(p, q), (f, g), (p1, q1), . . . , (pi, qi), (p⊥, qi+1), . . . , (p⊥, qn)
)

to ∆C , and

– for (p⊥, q) ∈ QC such that (q, (⊥, g), q1, . . . , qn) ∈ ∆A add(
(p⊥, q), (f, g), (p⊥, q1), . . . , (p⊥, qn)

)
to ∆C .

Furthermore, let ∆⊥B be the transition relation that is obtained from ∆C by
removing the second letter from the transitions.

We are ready to define the game graph GA,B as follows:
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• VIn ⊆
⋃m′

i=0

(
QB × (QA ∪ 2QC )

)i is the set of vertices of player In.

• VOut ⊆ QB × (QA ∪ 2QC )× Σ is the set of vertices of player Out.

• From a vertex of In the following moves are possible:

–
(
(p1, P1), . . . , (pn, Pn)

)
→
(
(pj , Pj), f

)
for each f ∈ Σ and each j, 1 ≤

j ≤ n such that there is a rule with left-hand side (pj , f) ∈ ∆B.

• From a vertex
(
(p, q), f

)
with q ∈ QA of Out the following moves are

possible:

– From
(
(p, q), f

)
with f ∈ Σi, i > 0, for each g ∈ Γj , j ≥ 0 and each

j1, . . . , jj ∈ {1, . . . , i}(
(p, q), f

) g→
(
(pj1 , P1), . . . , (pjj , Pj)

)
,

such that the following constraints are satisfied:

(i) ∃ (p, f, p1, . . . , pi) ∈ ∆B

(ii) ∀k, 1 ≤ k ≤ i with k /∈ {j1, . . . , jj} holds T (Bpk) = TΣ

(iii) ∃ (q, (f, g), q1, . . . , qn) ∈ ∆A

(iv) ∀k, j < k ≤ i holds s×⊥ ∈ T (Aqk) for all s ∈ T (Bpk)

(v) ∀k, 1 ≤ k ≤ j holds Pk = qk if jk = k else Pk = {(pk, qk)}
– From

(
(p, q), f

)
with f ∈ Σ0, for each g ∈ Γj , j ≥ 0 such that

(q, (f, g), q1, . . . , qj) ∈ ∆A and there exist trees t′1, . . . , t′j ∈ TΓ such
that ⊥⊗ t′k ∈ T (Aqk) for all 1 ≤ k ≤ n:(

(p, q), f
) g→

( )
.

• From a vertex
(
(p, P ), f

)
with P ∈ 2QC of Out the following moves are

possible:

– From
(
(p, P ), f

)
with f ∈ Σi, i > 0, for each g ∈ Γj , j ≥ 0 and each

j1, . . . , jj ∈ {1, . . . , i}(
(p, P ), f

) g→
(
(pj1 , P1), . . . , (pjj , Pj)

)
,

such that (i), (ii) and the following constraints are satisfied:

(vi) ∀p′ s.t. ∃(p′, q) ∈ P :

∗ If p′ ∈ QB, f ′ ∈ Σk and ∃ (p′, f ′, p′1, . . . , p
′
k) ∈ ∆B, then

∃ ((p′, q), (f ′, g), (p′1, q1), . . . , (p′l, ql)) ∈ ∆C

∗ If p′ = p⊥, then ∃ ((p′, q), (⊥, g), (p′1, q1), . . . , (p′j , qj)) ∈ ∆C

(vii) ∀p′ s.t. ∃(p′, q) ∈ P :
If ∃ ((p′, q), (f ′, g), (p′1, q1), . . . , (p′l, ql)) ∈ ∆C , then ∀k, j < k ≤
l : s×⊥ ∈ T (Aqk) ∀ s ∈ T (Bp′k)

(viii) ∀k, 1 ≤ k ≤ j :
Pk = {(p′k, qk) | ∃ (p′, q) ∈ P ∧ ∃ ((p′, q), (f ′, g), (p′1, q1), . . . , (p′l, ql)) ∈ ∆C}
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– From
(
(p, P ), f

)
with f ∈ Σ0, , for each g ∈ Γj , j ≥ 0(

(p, P ), f
) g→

( )
,

such that (vi), (vii) and the following constraint is satisfied
(ix) ∃ t′1, . . . , t′j ∈ TΓ s.t. ∀ (p′k, qk) ∈ Pk as defined in (vii):

∀k, 1 ≤ k ≤ j : s× t′k ∈ T (Aqk) for all s ∈ T (Bp′k)

• The initial vertex is
(
(qB0 , q

A
0 )
)
.

The game graph can be constructed, because Lemma 4.10 implies that it is
decidable whether the edge constraints hold.

The winning strategy for player Out should express that Out loses the game
if she can not continue to produce valid output. This is represented in the game
graph by all vertices of Out without outgoing edges. If one of these vertices is
reached during a play, Out loses the game. Let B be the set of these bad vertices
for Out, we define the game GA,B = (GA,B, V \B) as safety game for Out.

Recall the relation R1 from Example 4.23. The game graph GA1,B1 con-
structed from the D↓TAs A1 and B1 from Example 4.23 is depicted in Figure
4.4. Out has a winning strategy in the corresponding safety game GA1,B1 from
which a transducer that uniformizes R1 can be constructed as shown in the next
Lemma.

In the following we show that the question whether there exists a uniformiza-
tion by a TDT with synchronous input and output can be reduced to the ques-
tion of the existence of a winning strategy for Out in the above mentioned game.

Lemma 4.25 The relation R can be uniformized by a TDT with synchronous
input and output if Out has a winning strategy in GA,B.

Proof. Assume Out has a winning strategy in GA,B, then Out also has a positional
winning strategy in the game. Let σ denote such a strategy, each move of Out
is uniquely determined by the output symbol and the reached vertex of In.

We construct a deterministic TDT T = (Q,Σ,Γ, q0,∆) from σ as follows:

• Q ⊆ QB × (QA ∪ 2QC) is the set of states, with q0 := (qB0 , q
A
0 ) as initial

state, and

• ∆ is the transition relation build as follows:

– For each σ :
(
(p, P ), f

) g7→
(
(pj1 , P1), . . . , (pjn , Pn)

)
with f ∈ Σi, i >

0 and g ∈ Γn, n ≥ 0 add

(p, P )(f(x1, . . . , xi))→ g((pj1 , P1)(xj1), . . . , (pjn , Pn)(xjn))

to ∆, and
– for each σ :

(
(p, P ), f

) g7→
( )

with f ∈ Σ0 and g ∈ Γn, n ≥ 0 add

(p, P )(a)→ g(t′1, . . . , t
′
n)

to ∆ with t′1, . . . , t′n ∈ TΓ such that t′1, . . . , t′n satisfy the constraints
of the considered g-edge.
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{(p0, q0)}

(p0, q0), f

(p2, {p1, q1}), f((p1, q1), (p2, q2))

(p2, {(p1, q1)}), (p1, {(p2, q2)})

(p2, {(p⊥, q3)}), (p2, {(p⊥, q3)})

(p2, q2), f (p2, q2), a (p1, q1), b

(p2, {p1, q1}), a

(p1, {(p2, q2)}), b

(p2, {(p⊥, q3)}), a

(p2, {(p⊥, q3)}), f

()

f
f

f

f

b

a, b, f

a, b, f

b

a, b, f

Figure 4.4: The game graph GA1,B1 constructed from A1 and B1 from Example
4.23 that recognize R1 resp. dom(R1) from Example 4.23. To simplify the
graph edges with the same source and destination but with different labels are
combined to one edge with multiple labels. A possible winning strategy for Out
in GA1,B1 is emphasized in the graph.
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We now verify that T defines a uniformization of R. First, we prove
dom(R(T )) ⊆ dom(R). Let t ∈ dom(R(T )), we show by induction on the
height of a node v ∈ domt that there exists a configuration (t, t′, ϕ) of T with
(t, q0, ϕ0) →∗T (t, t′, ϕ) such that if there exists u ∈ domt′ with ϕ(u) = v and
u = (p, P ) ∈ Q, then the run ρ of B on t yields ρ(v) = p.

For the induction base, consider v = ε. In the initial configuration (t, q0, ϕ0)
we obtain ϕ0(ε) = ε with valq0(ε) = (qB0 , q

A
0 ) by construction of T . Obviously,

ρ(ε) = qB0 , thus the claim holds.
For the induction step from n to n + 1, consider v at height n. Assume

that the claim holds n, i.e., the induction hypothesis is true at v. Then, there
exists a configuration (t, t′, ϕ) such that (t, q0, ϕ0) →∗T (t, t′, ϕ) with u ∈ domt′

such that ϕ(u) = v and u = (p, P ) ∈ Q. By induction hypothesis we ob-
tain ρ(v) = p. Choose j, k ∈ N such that there exists a successor configura-
tion (t, t′′, ϕ′) of (t, t′, ϕ) with uk ∈ domt′′ and ϕ′′(uk) = vj. Let valt(v) =
f ∈ Σi, then the successor configuration was reached by applying a transi-
tion of the form (p, P )

(
f(x1, . . . , xi

)
→ g((pj1 , P1)(xj1), . . . , (pjn , Pn)(xjn)) and

valt′′(uk) = (pjk , Pk) with jk = j. Hence, by construction of T we know
that in a play according to σ the vertex

(
(p, P ), f

)
with an outgoing g-edge

to
(
(pj1 , P1), . . . , (pjn , Pn))

)
is reachable. Thus, from the construction of the

game graph it follows that (p, f, p1, . . . , pi) ∈ ∆B. Therefore ρ(vj) = pj and the
claim holds.

The above induction implies that for each leaf v of t, such that there ex-
ists a configuration (t, t′, ϕ) of T with ϕ(u) = v for some u ∈ domt′′ with
valt′(u) = (p, P ), holds that ρ(v) = p and (p, valt(v)) is a final combination.
For each leaf v, such that there exists no such configuration, holds that there
is a configuration (t, t′, ϕ) with v′ v v and ϕ(u) = v′ for some u ∈ domt′′ .
Let valt = f ∈ Σi, valt′ = (p, P ), and v = v′jv′′ with j ∈ N, v′′ ∈ N∗,
then there is a successor configuration reachable by applying a transition of
the form (p, P )

(
f(x1, . . . , xi

)
→ g((pj1 , P1)(xj1), . . . , (pjn , Pn)(xjn)) such that

j /∈ {j1, . . . , jn}. Since T is constructed according to σ, we obtain that there
is a transition (p, f, p1, . . . , pi) ∈ ∆B and furthermore T (Bpj ) = TΣ. Conse-
quently, t|v′j ∈ T (Bpj ), and thus also (ρ(v), valt(v)) is a final combination.
Hence, t ∈ dom(R).

Secondly, we show that t ∈ dom(R) implies (t, T (t)) ∈ R. We show by
induction on the number of steps n needed to reach a configuration c = (t, t′, ϕ)
with Dt′ 6= ∅ that for each u ∈ Dt′ holds:

(a) Let ρB be the run of B on t and ρA be the run of A on t⊗ t′. If valt′(u) =
(p, q), then ρB(u) = p and ρA(u) = q. If valt′(u) = (p, P ) with P ∈ ∈QC ,
then for some (p′, q) ∈ P holds ρA(u) = q and if u ∈ domt, then ρB(u) = p′

otherwise p′ = p⊥.

(b) Let ρA(u) = q. There exists c′ = (t, t′′, ϕ′) with c →T c′ and u /∈ Dt′′

such that
(
q, (valt(u), valt′′(u)), q1, . . . , qn

)
∈ ∆A, q1, . . . , qn ∈ QA and for

(t⊗ t′′)|ui holds if (t⊗ t′′)|ui ∈ TΣ⊥∪Γ⊥ , then (t⊗ t′′)|ui ∈ T (Aqi) for each
i, 1 ≤ i ≤ n.
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For the induction base, we consider the initial configuration (t, t0, ϕ0) with
t0 = (qB0 , q

A
0 ) and Dt0 = {ε}. For part (a), it holds that valt0(ε) = (qB0 , q

A
0 ),

and each run of A starts in qA0 , each run of B starts in qB0 , i.e., ρA(ε) = qA0
and ρB(ε) = qB0 . For part (b), since each play starts in

(
(qB0 , q

A
0 )
)
and σ is

a winning strategy for Out, the vertex
(
(qB0 , q

A
0 ), valt(ε)

)
is reachable and Out

can make her next move by taking some g-edge according to σ. Let valt(ε) =
f ∈ Σi, g ∈ Γj with i, j ≥ 0. Thus, by construction of T , there is a transi-
tion (qB0 , q

A
0 )
(
valt(ε)(x1, . . . , xi)

)
→ g((pj1 , P1)(xj1), . . . , (pjj , Pj)(xjj )) ∈ ∆ or

a transition (qB0 , q
A
0 )
(
valt(ε)

)
→ g(t′1, . . . , t

′
j) ∈ ∆, t′1, . . . , t

′
j ∈ TΓ, and con-

sequently there exists a (unique) successor configuration (t, t1, ϕ1) such that
(t, t0, ϕ0) →T (t, t1, ϕ1) with valt1(ε) = g. From the fact that the g-edge
exists in the game graph we know that there exists a transition of the form(
qA0 , (valt(ε), valt1(ε)), q1, . . . , qn

)
∈ ∆A, q1, . . . , qn ∈ QA. It remains to be

shown, that the parts of the output which are final, i.e., the subtrees of t ⊗ t1
that do not contain states as leaves, are accepted by A. In order to show that,
we distinguish two cases. First, let f ∈ Σ0, then n = j and (t⊗ t1)|k = ⊥⊗ t′k
for k, 1 ≤ k ≤ j. We obtain ⊥ ⊗ t′k ∈ T (Aqk) for k, 1 ≤ k ≤ j, because
the existence of the g-edge implies that these constraints are satisfied. Sec-
ondly, let i > j, then n = i and (t ⊗ t1)|k = sk ⊗ ⊥ for some sk ∈ T (Bpk) for
k, j+1 ≤ k ≤ j. Again, the existence of the g-edge implies that sk⊗⊥ ∈ T (Aqk)
for k, j + 1 ≤ k ≤ j. Hence, the claim holds.

For the induction step, let cn = (t, tn, ϕn), cn+1 = (t, tn+1, ϕn+1) be
configurations such that (t, t0, ϕ0) →n

T (t, tn, ϕn) →T (t, tn+1, ϕn+1) with
Dtn+1 6= ∅. Assume the claim holds for n. Consider any u ∈ Dtn+1 . In the
case that u ∈ Dtn , it follows directly from the induction hypothesis that the
claim holds. So, assume u /∈ Dtn . In this case the configuration cn+1 was
reached by producing output at the predecessor u′ of u. That is, there exists
u′ ∈ Dtn , u

′ /∈ Dtn+1 with valtn(u′) = (p, P ), valt(ϕn(u′)) = f ∈ Σi, i > 0 and
(p, P )(f(x1, . . . , xi)) → g((pj1 , P1)(xj1), . . . , (pjj , Pj)(xjj )) ∈ ∆ and cn+1 was
reached by applying this transition producing output at u′. Furthermore, we
know that in a play according to σ the vertex

(
(p, P ), f

)
is reachable and the

next move leads to
(
(pj1 , P1), . . . , (pjj , Pj)

)
via an g-edge. Let u be the kth

successor of u′, then valtn+1(u) = (pjk , Pk) and ϕn+1(u) = v such that v = v′jk
for ϕtn(u′) = v′. To prove part (a) of the claim, we distinguish two cases:

(i) P = q ∈ QA:
By induction hypothesis we know that ρB(u′) = p and ρA(u′) = q. Since
σ defines the next move of Out from

(
(p, q), f

)
with output g, there exist

transitions (p, f, p1, . . . , pi) ∈ ∆B and (q, (f, g), q1, . . . , qn) ∈ ∆A. Hence,
ρA(u) = qk. By construction of Pk it holds that Pk = qk if jk = k, or if
jk 6= k, jk ≤ rk(g) it holds Pk = {(pk, qk)}. In both cases, ρB(u) = pk and
ρA(u) = qk. If jk > rk(g), it holds Pk = {(p⊥, qk)}, ρA(u) = qk and ρB(u)
is not defined.

(ii) P ∈ 2QC :

By induction hypothesis we know that ρB(u′) = p′ and ρA(u′) = q for some



56 Chapter 4. Uniformization by Top-Down Tree Transducers

(p′, q) ∈ P , and also
(
q, (valt(u′), valtn+1(u′)), q1, . . . , qn

)
∈ ∆A. Therefore,

the run of A on t ⊗ T (t) results in ρA(u) = qk. If u′ /∈ domt, then
u /∈ domt and p′ = p⊥, otherwise if u′ ∈ domt, then p′ ∈ QB and there
exists (p′, valt(u′), p1, . . . , prk(valt(u′))) ∈ ∆B, because t ∈ dom(R). Hence,
if u ∈ domt the run of B on t results in ρB(u) = pk. Since there exists an
g-edge from

(
(p, P ), f

)
to
(
(pj1 , P1), . . . , (pjj , Pj)

)
, we can conclude that

Pk contains (p⊥, qk) respectively (pk, qk).

Concerning part (b) of the claim, from
(
(pj1 , P1), . . . , (pjj , Pj)

)
In can move to(

(pjk , Pk), valt(v)
)
. Since σ is a winning strategy for Out, she moves to the next

vertex via some g-edge. Consequently, there exists a corresponding transition
in T , and thus also a successor configuration cn+2 = (t, tn+2, ϕn+2) of cn+1 such
that valtn+2(u) = g. Again, we distinguish two cases.

(i) Pk = qk ∈ QA:
In this case we have u = v, then the existence of a g-edge im-
plies that there exists

(
qk, (valt(u), valtn+2(u)), qk1, . . . , qkn

)
∈ ∆A,

(pk, valt(u), pk1, . . . , pki) ∈ ∆B and ρA(ul) = qkl for l, 1 ≤ l ≤ n. It
holds either valt(v) ∈ Σ0 or valt(v) ∈ Σi, i > 0. In the first case,
(t⊗tn+2)|ul = ⊥⊗t′l for l, 1 ≤ l ≤ n and t′1, . . . , t′n satisfy the constraints of
the g-edge. It follows directly that (t⊗ tn+2)|ul ∈ T (Aqkl) for l, 1 ≤ l ≤ n.
In the latter case, assume g ∈ Γj with j < i, then (t ⊗ tn+2)|ul = sl ⊗ ⊥
for some sl ∈ T (Bpkl) for l, 1 ≤ l ≤ j. Again, the possibility of the move
yields that (t⊗ tn+2)|ul ∈ T (Aqkl) for l, 1 ≤ l ≤ j.

(ii) Pk ∈ 2QC :

From above, we have ρA(u) = qk, ρB(u) = pk, and (pk, qk) ∈ Pk. Since the
g-edge exists, by construction of the game graph, it holds that for each
p, each f ∈ Σ if there exists a transition with left-hand side (p, f) ∈ ∆B
or for p = p⊥ and ⊥ such that (p, q) ∈ Pk, there exists a transition with
left-hand side (q, (f, g)) respectively (q, (⊥, g) ∈ ∆A. Hence, a succes-
sor configuration c2 is reachable and there exists a transition of the form(
qk, (valt(u), valtn+2(u)), qk1, . . . , qkn

)
∈ ∆A. As in the above case, it fol-

lows with the same argumentation that each (t ⊗ tn+2)|ul with 1 ≤ l ≤ n
such that (t⊗ tn+2)|ul ∈ TΓ⊥ is accepted by Aqkl , because the constraints
hold for each (q, p) ∈ Pk.

In both cases the claim holds.
Altogether, we obtain for t ∈ dom(R) that t →∗T t′ ∈ TΓ and (t, t′) ∈ R.

Obviously, T is deterministic, thus T defines a uniformization of R.

�

We now show that the other direction holds as well.

Lemma 4.26 If there exists a TDT T with synchronous input and output that
uniformizes R, then Out has a winning strategy in the safety game GA,B.
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Proof. Assume R is uniformized by a TDT T with synchronous input and
output. A winning strategy for Out can mimic T by choosing her moves corre-
sponding to the applied transitions of T .

After n moves of In, let f1 . . . fn ∈ Σ∗ be the induced sequence of input labels
and i1 . . . in−1 ∈ dirΣ be the induced path. Let g1 . . . gn ∈ Γ∗ be the sequence
of output labels on the path u1 . . . un−1 ∈ dirΓ that was produced by T reading
the labeled path f1i1 . . . fn in some valid input tree t ∈ T f1i1...fn

Σ .
We show by induction on the number of played moves by In that after

n moves of In for a reached vertex ((p, P ), fn) of Out holds that there is
a configuration cn = (t, t′, ϕn) of T on some t ∈ T f1i1...fn

Σ ∩ dom(R) such
that there exists u1 . . . un−1 ∈ domt′ with ϕn(u1 . . . un−1) = i1 . . . in−1 and
s(fn(x1, . . . , xi))→ gn(s1(xj1), . . . , sk(xjk)) ∈ ∆T for valt′(u1 . . . un−1) = s such
that

(i) if P = q ∈ QA, then u1 . . . un−1 = i1 . . . in−1 with

C : qC0
f1...fn−1⊗g1...gn−1−−−−−−−−−−−−→in−1 (p, q)

and ((p, q), (fn, gn), (p1, q1), . . . , (pm, qm)) ∈ ∆C .

(ii) if P ∈ 2QC , then for each (p′, q′) ∈ P and each (p′, f ′n, p
′
1, . . . , p

′
i) ∈ ∆⊥B the

tree t can be chosen with val⊥t (ε) = f ′1, val
⊥
t (ui) = f ′i+1 for 1 ≤ i < n such

that
C : qC0

f ′1...f
′
n−1⊗g1...gn−1−−−−−−−−−−−−→un−1 (p′, q′)

and
(
(p′, q′), (f ′n, gn), (p′1, q

′
1), . . . , (p′m, q

′
m)
)
∈ ∆C .

Note that since T uniformizes R, if the claim is true, then this implies that from
this vertex an outgoing edge exists. Then Out can make the move corresponding
to the transition applied in the next computation step of T and wins, i.e., Out
can take the gn-labeled edge from

(
(p, P ), f

)
to
(
(pj1 , P1), . . . , (pjk , Pk)

)
.

For the induction base, consider the first reached vertex of Out of the form(
(qB0 , q

A
0 ), f1

)
. In the initial configuration c1 = (t, t′, ϕ1) of T on each tree t ∈ T fΣ

it holds that ϕ1(ε) = ε. Since T uniformizes R, there exists s(f1(x1, . . . , xi))→
g1(s1(xj1), . . . , sk(xjk)) ∈ ∆T such that s is the initial state of T . It follows
directly that the claim holds.

For the induction step, assume that the claim holds for n. Let ((p, P ), fn)
be the nth reached vertex of Out in a play,

(
(pj1 , P1), . . . , (pjk , Pk)

)
be the

subsequent reached vertex of In, and ((p′, P ′), fn+1) the (n+1)th reached vertex
of Out. We distinguish two cases.

(i) P ′ = q′ ∈ QA, then ((p′, q′), fn+1) was reached from ((p, q), fn) with P = q
for some q ∈ QA.

(ii) P ′ ∈ 2QC , then ((p′, P ′), fn+1) was reached from

(a) ((p, P ), fn) with P ∈ 2QC , or

(b) ((p, q), fn) with P = q for some q ∈ QA.
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In both cases, it follows from the induction hypothesis that there exists a con-
figuration cn = (t, t′, ϕn) of T with t ∈ T f1i1...fn

Σ ∩dom(R) such that there exists
u1 . . . un−1 ∈ domt′ with ϕn(i1 . . . in−1) = u1 . . . un−1, valt′(u1 . . . un−1) = s,
valt(i1 . . . in−1) = fn and s(fn(x1, . . . , xi)) → gn(s1(xj1), . . . , sk(xjk)) ∈ ∆T .
Out takes the edge corresponding to this transition.

In case (i), the induction hypothesis yields that C : qC0
f1...fn−1⊗g1...gn−1−−−−−−−−−−−−→in−1

(p, q) and
(
(p, q), (fn, gn), (p1, q1), . . . , (pm, qm)

)
∈ ∆C . We obtain p′ = pin and

q′ = qin . Consequently, C : (p, q)
fn⊗gn−−−−→in (p′, q′). It is easily seen that if

additionally valt(i1 . . . in) = fn+1, then a configuration cn+1 with cn →T cn+1

is reachable that satisfies the claim.
For part (a) of case (ii), let In move from

(
(pj1 , P1), . . . , (pjk , Pk)

)
to

the jth element of this list together with input fn+1. Then, in = jj ,
un = j, and consequently p′ = pjj and P ′ = Pj . Consider a pair
(p′j , q

′
j) ∈ Pj , by construction (p′j , q

′
j) ∈ Pj if there is some (p′, q′) ∈ P

and
(
(p′, q′), (f ′n, gn), (p′1, q

′
1), . . . , (p′m, q

′
m)
)
∈ ∆C for some f ′n ∈ Σ⊥. By

induction hypothesis and the existence of the transition, we can assume

that t is chosen such that C : qC0
f ′1...f

′
n−1⊗g1...gn−1−−−−−−−−−−−−→un−1 (p′, q′)

f ′n⊗gn−−−−→un

(p′j , q
′
j). Let cn+1 = (t, t′′, ϕn+1) be a successor configuration of cn that re-

sults from applying s(fn(x1, . . . , xi)) → gn(s1(xj1), . . . , sk(xjk)) thereby pro-
ducing output gn at u1 . . . un−1. We obtain ϕn+1(u1 . . . un) = i1 . . . in with
valt(i1 . . . in) = fn+1 and valt′′(u1 . . . un) = sj . Since T uniformizes R, there
has to exist a transition sj(fn+1(x1, . . . , xi)) → gn+1(s′1(xj1), . . . , s′k(xjk)) ∈
∆T . For each (p′j , f

′
n+1, p

′1
j , . . . , p

′i
j ) ∈ ∆⊥B , assume t is chosen such that

val⊥t (u1 . . . un) = f ′n+1. In the next computation step of T , the out-
put gn+1 at u1 . . . un is produced independently of val⊥t (u1 . . . un), thus
there exists

(
(p′j , q

′
j), (f

′
n+1, gn+1), (p′1j , q

′1
j ), . . . , (p′mj , q′mj )

)
∈ ∆C for each

(p′j , f
′
n+1, p

′1
j , . . . , p

′i
j ) ∈ ∆⊥B . Hence, the claim holds for n+ 1.

We skip part (b) of case (ii), because ((p, q), fn) corresponds to
(p, {(p, q)}, fn) such that only (p, fn, p1, . . . , pi) ∈ ∆B has to be considered.

�

From Lemmata 4.25 and 4.26 together with the fact that a winning strategy
for Out can effectively be computed in GA,B we obtain the following result.

Theorem 6 It is decidable whether a D↓TA-recognizable relation with D↓TA-
recognizable domain has a uniformization by a top-down tree transducer with
synchronous input and output.

We conclude the chapter by providing an example of a relation where it is
necessary for a transducer which uniformizes the relation, that input and output
are asynchronous.

Example 4.27 Let Σ be a ranked alphabet given by Σ2 = {f} and Σ0 = {a, b}
and Γ be a ranked alphabet given by Γ2 = {f}, Γ1 = {g} and Γ0 = {a, b}.
Consider the following relation R2 ⊆ TΣ × TΓ given by {

(
f(b, t), g(f(t′, b))

)
|

¬∃u ∈ domt : valt(u) = b}.
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The relation R2 is very similar to the relation R1 from Example 4.23. Thus,
it is easy to see that R2 and dom(R2) are D↓TA-recognizable. Also, a TDT
that uniformizes R2 can be obtained from the TDT T from Example 4.23 by
replacing the transition q0(f(x1, x2)) → f(q1(x2), q2(x1)) with q0(f(x1, x2)) →
g(f(q1(x2), q2(x1))).

However, postponing the output would result in a transition q0(f(x1, x2))→
g(q′(x1)) or q0(f(x1, x2)) → g(q′(x2)). For the same reasons as presented in
Example 4.23, it is not possible to pursue only one path, because then the input
tree can not completely be verified and the transducer would transform invalid
input trees.

We have seen in the above example that we cannot alter a transducer that
defines a uniformization such that the output is postponed as described in Re-
mark 4.12 if the input tree has to be verified. Let us recall the definition of
GA,B, we see that the underlying structure of the game graph does not allow for
more than one produced output symbol at the same time.
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Chapter 5

Uniformization by Bottom-Up
Tree Transducers

While in the previous chapter we considered uniformization in the class of
top-town tree transformations, we now consider the question whether a tree-
automatic relation has a uniformization by a bottom-up transducer. We only
explore this topic briefly by focusing on a very restricted setting similar to the
case presented at the beginning of the previous chapter.

5.1 Bottom-Up Tree Transducer

Bottom-up tree transducers transform an input tree from the leafs to the root.
Unlike top-down tree transducers, in the bottom-up case it is possible for a
transducer to discard already produced output. For an introduction to bottom-
up tree transducers we mention [CDG+07].

Definition 5.1 (BTT). A bottom-up tree transducer is of the form T =
(Q,Σ,Γ,∆, F ) consisting of a finite set of states Q, a finite input alphabet
Σ, a finite output alphabet Γ, a set F of final states, and ∆ is a finite set of
transition rules of the form

f(q1(x1), . . . , qi(xi))→ q(u),

where f ∈ Σi, u ∈ TΓ(Xi), and q, q1, . . . , qn ∈ Q, or

q(x1)→ q′(u) (ε-transition),

where u ∈ TΓ(X1) and q, q′ ∈ Q.

A configuration of a bottom-up tree transducer is a tree over the ranked
alphabet Σ ∪ Γ ∪Q, where Q is used as a set of unary symbols.

Let t, t′ ∈ TΣ∪Γ∪Q be configurations of a bottom-up tree transducer. We
define a successor relation →T on configurations by:
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t→T t′ :⇔


∃f(q1(x1), . . . , qn(xn)))→ q(u) ∈ ∆
∃s ∈ SΣ∪Γ∪Q
∃t1, . . . , ti ∈ TΓ

t = f(q1(t1), . . . , qi(ti)) · s
t′ = q(u[x1 → t1, . . . , xi → ti]) · s

Furthermore, let →∗T be the reflexive and transitive closure of →T and →n
T

the reachability relation for →T in n steps.

A bottom-up tree transducer is deterministic (a DBTT) if it contains no
ε-transition and there are no two rules with the same left-hand side.

Definition 5.2 (Semantics of BTTs). The relation R(T ) ⊆ TΣ × TΓ induced
by a bottom-up tree transducer T is

R(T ) = {(t, t′) | t→∗T q(t′) with t ∈ TΣ, t
′ ∈ TΓ and q ∈ F}.

For a tree t ∈ TΣ let T (t) := {t′ ∈ TΓ | (t, t′) ∈ R(T )}.

The class of relations definable by BTTs is called the class of bottom-up tree
transformations.

Example 5.3 Let Σ be a ranked alphabet given by Σ2 = {f}, Σ1 = {g, h},
and Σ0 = {a}. Consider the BTT T given by ({q},Σ,Σ,∆, {q}) with ∆ =

{ a → q(a),
a → q(f(a, a)),

g(q(x1)) → q(g(x1)),
h(q(x1)) → q(h(x1)),

f(q(x1), q(x2)) → q(f(x1, x2)) }.

For each t ∈ TΣ the transducer can non-deterministically replace all occurrences
of a in t by f(a, a).

5.2 A Restricted Uniformization Case

In this section we only regard tree-automatic relations such that for each pair
(t, t′) that is part of the relation holds domt = domt′ . A BTT that implements
a uniformization of such a relation should do so by relabeling the nodes in an
input tree. Formally, the corresponding uniformization problem is defined as
follows.

Definition 5.4 Let R be a tree-automatic relation such that for each (t, t′) ∈ R
holds that domt = domt′ . The restricted uniformization problem is the decision
problem whether there exists a uniformization of R whose graph is recognizable
by a deterministic BTT T such that only transitions of the following form are
used:

f(q1(x1), . . . , qi(xi))→ q(g(x1, . . . , xi)),
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where f ∈ Σi, g ∈ Γi, and q, q1, . . . , qi ∈ Q.

For the rest of this chapter we fix a tree-automatic relation R ⊆ TΣ × TΓ

with Σ =
⋃m
i=0 Σi such that domt = domt′ for each (t, t′) ∈ R. Let a DTA

A = (QA,Σ × Γ,∆A, FA) recognize R and let a DTA B = (QB,Σ,∆B, FB)
recognize dom(R).

We provide a decision procedure for the problem mentioned above that re-
duces the question whether there exists such a uniformization to the question
of the existence of winning strategies in a safety game between In and Out.

Similar to the previously considered games, the vertices of the game graph
keep track of the state of B on the input and the state of A on the combination
of input and output. However, since the input tree is read from bottom to top,
the vertices also keep track of the previously reached combinations of states of
A and B. Player In can combine an input symbol with states of B from the set
of reached states such that a valid left-hand side of a transition in ∆B is formed.
If possible, Out can play an output symbol such that the (to the states of B)
associated states of A and the pair of input symbol and chosen output symbol
form a valid left-hand side of a transition in ∆A.

With these properties in mind, the game graph GA,B is built as follows:

• VIn ⊆ 2QA×QB is the set of vertices of player In,

• VOut ⊆ (
⋃m
i=0(QA ×QB)i × Σi)× VIn is the set of vertices of player Out.

• From a vertex of In the following moves are possible:

– P →
[(

(q1, p1), . . . , (qi, pi), f
)
, P
]
if f ∈ Σi and (q1, p1), . . . , (qi, pi) ∈

P such that there exists (p1, . . . , pi, f, p) ∈ ∆B

• From a vertex of Out the following moves are possible:

–
[(

(q1, p1), . . . , (qi, pi), f
)
, P
] r→ {(q, p)}∪P if there exists a transition

r = (q1, . . . , qi, (f, g), q) ∈ ∆A and a transition (p1, . . . , pi, f, p) ∈ ∆B

• The initial vertex is ∅.

The winning condition should express that player Out loses the game if the
input can be extended, but no valid output can be produced. This is represented
in the game graph by all P ∈ VIn such that there is (q, p) ∈ P with p ∈ FB, but
q /∈ FA and by all vertices in VOut that have no outgoing edges. Let B denote
this set. If one of these bad vertices is reached during a play, Out must lose the
game. Therefore, we define GA,B = (GA,B, V \B) as safety game for Out.

Intuitively, since the set of reachable states only grows in a play, it is not
necessary in a winning strategy for Out that Out choses a different output symbol
in case that a left-hand side of a transition is visited again (together with a
grown set of reachable states). Before we turn to the proof that from a winning
strategy in GA,B a BTT that uniformizes R can be constructed, we formalize
the above intuition.
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Remark 5.5 Given a positional winning strategy σ for Out in GA,B. Consider
two vertices in VOut such that

σ :
[(

(q1, p1), . . . , (qi, pi), f
)
, P
] r7→ {(q, p)} ∪ P

and

σ :
[(

(q1, p1), . . . , (qi, pi), f
)
, P ′
] r′7→ {(q′, p′)} ∪ P ′ with P ⊆ P ′.

Then redefining σ such that σ :
[(

(q1, p1), . . . , (qi, pi), f
)
, P ′
] r7→ {(q, p)} ∪ P ′

also yields a winning strategy for Out.

Proof. In each play on GA,B, when a vertex P ∈ VIn is reached, each vertex that
is visited afterwards in the play is either of the form P ′ ∈ VIn or [(. . . ), P ′] ∈
VOut with P ⊆ P ′ by construction of the game graph. That means x :=[(

(q1, p1), . . . , (qi, pi), f
)
, P
]
is visited before y :=

[(
(q1, p1), . . . , (qi, pi), f

)
, P ′
]

in a play played according to σ. When the play is in x, the next moves leads
to {(q, p)} ∪ P . If eventually y is reached, it is also possible for Out to take the
r-edge instead of the r′-edge specified by σ. The r-edge has to exist, because
the constraints to add a r-edge outgoing from y in the game graph are also
fulfilled. Choosing the r-edge from this vertex leads to {(q, p)} ∪ P ′. It already
holds that {(q, p)} ∈ P ′, thus the move leads again to P ′. Since σ is a winning
strategy and P ′ was visited before, this also defines a winning strategy for Out.

�

The following lemma shows us that we can construct a bottom-up tree trans-
ducer that uniformizes R from a winning strategy of Out in the game and vice
versa.

Lemma 5.6 The relation R can be uniformized by a restricted BTT in the sense
as defined in Definition 5.4 if, and only if, Out has a winning strategy in GA,B.

Proof. Assume that Out has a winning strategy in GA,B. Then there also exists
a positional one. We can represent a positional winning strategy by a function
σ : VOut → ∆A. More conveniently, we usually also indicate the reached vertex
of In.

With Remark 5.5 in mind, we construct a deterministic BTT T =
(Q,Σ,Γ,∆, F ) from σ as follows:

• Q := QA ×QB is the set of states, and

• F := {(q, p) ∈ Q | q ∈ FA, p ∈ FB} is the set of final states, and

• ∆ is build up in the following way:

1. Start at x := ∅ ∈ VIn

2. From x ∈ VIn move to y :=
[(

(q1, p1), . . . , (qi, pi), f
)
, P
]
∈ VOut such

that no y′ :=
[(

(q1, p1), . . . , (qi, pi), f
)
, P ′
]
with P ⊆ P ′ was visited

before:
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(a) if σ(y) = {(q, p)} ∪ P via r = (q1, . . . , qi, (f, g), q) ∈ ∆A add
f
(
(q1, p1)(x1), . . . , (qi, pi)(xi)

)
→ (q, p) (g(x1, . . . , xi)) to ∆

(b) x := {(q, p)} ∪ P
3. Continue with step 2, if no new vertex can be reached, stop.

The resulting BTT T is deterministic and it is easy to see that R(T ) ⊆ R.
We verify that T defines a uniformization of R. Let t ∈ TΣ and ρ is the

run of B on t. We show by induction on the height of t that there exists a tree
t′ ∈ TΓ such that t→∗T (q, p)(t′) if ρ(ε) = p.

For the induction base, we have t = a ∈ Σ0. Let ρ(ε) = p. Each play starts
in ∅, thus In can reach the vertex [a, ∅]. The winning strategy σ defines the
next move to {(q, p)} via some r-edge with r = ((a, b), q). Hence, the transition
a→ (p, q)(b) is added to ∆ and we obtain a→∗T (q, p)(b).

For the induction step, consider t = f(t1, . . . , ti) and let ρ(ε) = p and
ρ(j) = pj for 1 ≤ j ≤ i. By induction hypothesis, we have tj →∗T (qj , pj)(t

′
j)

for 1 ≤ j ≤ i. Therefore, in a play played according to σ, a vertex P ∈ VIn
can be reached such that

⋃i
j=1(qj , pj) ⊆ P . From this vertex In can move to[(

(q1, p1), . . . , (qi, pi), f
)
, P
]
. Next, Out moves to some {(q, p)}∪P via an r-edge

with r = (q1, . . . , qi, (f, g), q) ∈ ∆A. It follows that there exists a corresponding
transition in ∆ and we can conclude f(t1, . . . , ti)→∗T (q, p) (g(t′1, . . . , t

′
i)). Thus,

the claim holds.
Note that only states (q, p) with q ∈ FA ⇔ p ∈ FB can occur in configura-

tions of T , because σ is a winning strategy. Now, consider t ∈ dom(R), then
ρ(ε) = p ∈ FB. From the above induction we derive that there exists a tree
t′ ∈ TΓ such that t→∗T (q, p)(t′) with (q, p) ∈ F , i.e., (t, t′) ∈ R.

For the other direction, assume that R is uniformized by a restricted de-
terministic BTT T = (Q,Σ,Γ,∆, F ) in the sense as defined in Definition 5.4.
Our goal is to translate the outputs generated by T on the inputs played by In
into moves of Out. We define the strategy σ of Out inductively. We show by
induction on the number of moves by In that for each reached vertex P ∈ VIn
in a play for each (q, p) ∈ P holds there exists t ∈ TΣ such that the run ρB of
B on t yields ρB(ε) = p, and letting t′ = T (t) the run ρA of A on t ⊗ t′ yields
ρA(ε) = q.

For the induction base, we consider the beginning of each play which starts
in ∅ ∈ VIn. The first move leads to

[(
a
)
, ∅
]
∈ VOut for some (a, p) ∈ ∆B. Letting

b = T (a), we define σ(
[(
a
)
, ∅
]
) = {(q, p)} via r with r =

(
(a, b), q

)
∈ ∆A, where

for (q, p) the claim holds.
For the induction step, we consider a vertex P ∈ VIn reached after the

nth move of In. Let the induction hypothesis be true for each (qj , pj) ∈ P
for 1 ≤ j ≤ n. Thus, there exists tj ∈ TΣ with tj →∗T sj(t

′
j) such that ρB

on tj ends in pj and ρA on tj ⊗ t′j ends in qj for each (qj , pj) for 1 ≤ i ≤
n. Subsequently, In moves to some

[(
(q1, p1), . . . , (qi, pi), f

)
, P
]
∈ VOut with

(p1, . . . , pi, f, p) ∈ ∆B. Since T uniformizes R, we know that there exists a
transition f(s1(x1), . . . , si(xi)) → s(g(x1, . . . , xi)) ∈ ∆. Since A recognizes R,
there also has to exist a corresponding transition (q1, . . . , qi, (f, g), q) ∈ ∆A.
Hence, Out chooses this transitions for her next move which leads to {(q, p)} ∪
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P ∈ VIn. Thus, the (n+ 1)th move of In leads to {(q, p)}∪P and for (q, p) holds
that the run ρB of B on t with t = f(t1, . . . , ti) yields ρB(ε) = p, and the run
ρA of A on t⊗ t′ with t′ = g(t′1, . . . , t

′
i) yields ρA(ε) = q. Hence the claim holds.

It remains to show that σ defines a winning strategy for Out. That is, no
bad vertex can be reached during a play. In the above induction we have seen,
that each reached vertex of Out has at least one outgoing edge. Furthermore,
for each reached vertex of In for each (q, p) ∈ P the run of A on t⊗ T (t) ends
in q. Since T uniformizes R it follows that q ∈ FA ⇔ p ∈ FB. This shows that
σ is indeed a winning strategy for Out.

�

Combining Lemma 5.6 and the fact that a winning strategy for Out can be
effectively computed in GA,B we derive the following result.

Theorem 7 The restricted uniformization problem in the class of bottom-up
tree transformations is decidable.
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Conclusion

In this thesis we focused on uniformization of tree-automatic relations in the
class of tree transformations defined by top-down and bottom-up tree transduc-
ers.

In Chapter 4 we were concerned whether the question, if a given deter-
ministic top-down tree automaton-definable relation has a uniformization by a
top-down tree transducer, is decidable.

We have shown that this question is decidable under the restriction that a
top-down tree transducer is not required to validate the input, meaning that
a transducer implementing a uniformization can behave arbitrarily on invalid
inputs. We were able to provide a decision procedure corresponding to the
uniformization question in this setting.

We have seen that the presented decision procedure concerning uniformiza-
tion without input validation can not be transferred directly to decide the prob-
lem corresponding to the classical uniformization question (with input valida-
tion). The reason for this is that in the employed transducer model it is not
possible to verify the input without producing output. Although the procedure
can not be transferred one-to-one, we were able to adept it to the case where
a top-down tree transducer outputs one symbol for each read input symbol.
Thus, we have shown that it is decidable whether a (deterministic top-down
tree-automaton definable) relation has a uniformization by a top-down trans-
ducer with synchronous input and output.

In Chapter 5, concerning the uniformization of tree-automatic relations by
bottom-up transducers, we have seen that it is decidable whether a relation has
a uniformization by a bottom-up tree transducer which exchanges the labels of
each node.

Future Research

Regarding the uniformization by top-down tree transducers we mention two
directions. One direction for future research (in the setting where it is not
required to verify the input) is to also allow the relation to be specified by non-
deterministic top-down tree automata. The other direction is to further explore
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the setting where the input has to be verified.
We have only briefly explored uniformization by bottom-up tree transducers,

which could be studied further to obtain more general results. In comparison to
top-down tree transducers, this model is less restricted in the sense that bottom-
up tree transducers can discard transformed output, thereby it is possible to
check input without keeping the output produced for doing so.

Generally, one could also study uniformization questions for other models of
transducers besides the models considered in this thesis. For example, top-down
transducers with regular lookahead, see [Eng76], or, for further models see the
bibliographic section on tree transducers in [CDG+07].
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