
Synthesizing Computable Functions from
Synchronous Specifications

Sarah Winter

Université libre de Bruxelles, Belgium

January 6, 2021
YR-OWLS, online

Reactive Synthesis of Non-terminating Systems

Specification Implementation
synthesize

one input is in relation
with several outputs

algorithm that selects
a unique output for each input

Spec Impl· · · 101011
010100 · · ·

101101 · · ·
· · · 101011

010100 · · ·

101101 · · ·

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 2 of 24

Church Synthesis

0 1

¬req/¬grt

req/grt

req/¬grt

∗/grt

∗/¬grt

Synchronous specifications
(synchronous relations)

e.g, given by
synchronous transducers with

parity acceptance

¬req/¬grt

req/grt

Synchronous implementations
given by

Mealy machines

Theorem (Büchi/Landweber’69). It is decidable whether a syn-
chronous specification is implementable by a Mealy machine.

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 3 of 24

More Relaxed Implementations
Goal Decide whether a synchronous specification is
implementable (by an algorithm/a program/a deterministic
Turing machine).

Example.
I Specification: contains pairs of the form

(a1a2a3 · · · , a3 · · ·) ∈ {a, b}ω × {a, b}ω

I no implementation by a Mealy machine exists,
I can be implemented, every deterministic machine has to

wait until it sees the third input letter

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 4 of 24

More Relaxed Implementations
Example.
I Specification: contains pairs of the form

(uAα,A|u|β) (uBα,B|u|β),

where u ∈ {a, b}∗, α, β ∈ {a, b}ω, A,B are special letters
I can be implemented, but, every deterministic machine has

to wait arbitrary long to output something valid
I e.g., implemented by a deterministic machine that

computes the function

uAα 7→ A|u|α uBα 7→ B|u|α

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 5 of 24

Computability
What does it mean to be implementable for a relation?
I There is a computable function f with the same domain as

the relation R such that (α, f(α)) ∈ R for all α ∈ dom(R).

A function f : Σω ⇀ Γω is computable if there exists a
deterministic Turing machine that
I outputs longer and longer prefixes of an acceptable output
I while it reads longer and longer prefixes of the input.

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 6 of 24

Computability
Consider a deterministic Turing machine M with
I three tapes

I a one-way read-only input tape
I a two-way working tape
I a one-way write-only output tape

I M(α, k) denotes the output written after reading the first k
letters of the input sequence α

M computes f if for all α ∈ dom(f):
I ∀k: M(α, k) is a prefix of f(α), and
I ∀i ∃j: |M(α, j)| ≥ i

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 7 of 24

Computability and Continuity
A function f : Σω ⇀ Γω is continuous at α ∈ dom(f) if
I ∀i ∃j ∀β ∈ dom(f): |α ∧ β| ≥ j implies |f(α) ∧ f(β)| ≥ i.

f is continuous if it is continuous at every α ∈ dom(f).

Examples.
I f1 : uAα 7→ A|u|α uBα 7→ B|u|α,

for all u ∈ {a, b}∗, α ∈ {a, b}ω is continuous

I f2 : α 7→
{
aω if α contains ∞ many a
bω otherwise

for all α ∈ {a, b}ω is not continuous

I If f : Σω ⇀ Γω is computable, then it is continuous,
I the converse does not hold.

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 8 of 24

Computability and Continuity

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 9 of 24

Total vs. Partial Domain
I In synthesis, often a total specification domain is assumed,

else the synthesis task fails by design
I Here: We allow partial domain

Example.
I Specification: contains pairs of the form

(uAα,A|u|β) (uBα,B|u|β),

where u ∈ {a, b}∗, α, β ∈ {a, b}ω, A,B are special letters
I has partial domain {a, b}∗{A,B}{a, b}ω

I e.g., implemented by a deterministic machine that
computes the function uAα 7→ A|u|α uBα 7→ B|u|α

I There is no way to complete the domain and remain
implementable!

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 10 of 24

Results for Total Domain

Theorem (Holtmann/Kaiser/Thomas’10). It is decidable in 2EX-
PTime whether a continuous function can be synthesized from a
given synchronous relation with total domain.

Theorem (Klein/Zimmermann’14). It is EXPTime-complete to
decide whether a continuous function can be synthesized from a
given synchronous relation with total domain.

Is the function computable?

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 11 of 24

Implementations for Total Domain

Theorem (Holtmann/Kaiser/Thomas’10). Such a synthesized
function is computable by a sequential transducer.

A transducer is sequential if its underlying input automaton is
a DFA.

Example.

0 0

a/ε

b/bb

ba/ε

b/aab

(asynchronous) transducer

12 2

a/ε

c/a b/ε

a/c a/aab

sequential transducer

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 12 of 24

Results for Partial Domain

Theorem (Filiot/W.). It is EXPTime-complete to decide
whether a continuous function can be synthesized from a given
synchronous relation with partial domain. Such a synthesized
function is computable.

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 13 of 24

Proof Idea
Game view
I Adam plays input letters
I Eve plays output letters
I If the input sequence is in the specification domain,

input + output sequence must be in relation wrt the
specification

Problem
I Eve might need an unbounded lookahead on Adams moves
I We want a finite game arena, cannot store the lookahead

explicitly

Solution
I Instead of an explicit lookahead, store a finite abstraction

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 14 of 24

Proof Idea
Given a finite input word u ∈ Σ∗, its profile Pu stores all
inducible state transformations wrt the specification automaton.
Game Idea
I Adam plays input letters, building lookahead profiles
I Eve can delay her her move, or chose a state transformation

from a lookahead profile (instead of playing output letters)

u1 u2 u3 u4

λ1 ∈ Pu1 λ2 ∈ Pu2

Winning condition If Adam plays a valid input sequence,
I Eves makes a move infinitely often,
I her moves describe an accepting run wrt the specification.

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 15 of 24

Implementations for Partial Domain

Theorem (Filiot/W.). If a synchronous relation with partial
domain is implementable, then it can be implemented by a de-
terministic two-way transducer.

Example.
I Specification: contains pairs of the form

(uAα,A|u|β) (uBα,B|u|β),

where u ∈ {a, b}∗, α, β ∈ {a, b}ω, A,B are special letters
I e.g., implemented by a deterministic two-way transducer

that computes uAα 7→ A|u|α uBα 7→ B|u|α
I transducer goes right until A resp. B is read, no output
I goes back left to the beginning, no output
I goes right, outputs A resp. B for every letter until A resp.

B is read,
I goes right and copies the input

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 16 of 24

Total vs. Partial Domain Implementations
Total domain
I Sequential transducers with bounded lookahead suffice
I Intuitive reason for bounded lookahead

I If an arbitrary long lookahead is needed to determine the
next output,

I then a deterministic machine may wait forever to output
something valid.

I Result: a finite output sequence, but the infinite input
sequence is valid E

Partial domain
I Deterministic two-way transducers suffice, sequential

transducers do not
I Unbounded lookahead may be necessary

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 17 of 24

Summary

Spec
Impl Mealy computable

machine
synchronous
w/ total domain

EXPTime-c1 EXPTime-c2

synchronous
w/ partial domain

EXPTime-c1 EXPTime-c2

1 Starting from a specification given by a non-deterministic automaton
2 Starting from a specification given by a deterministic automaton

I Implementations for total domain
I sequential transducers suffice
I bounded lookahead suffices

I Implementations for partial domain
I deterministic two-way transducers suffice
I unbounded lookahead may be necessary

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 18 of 24

Going Beyond Synchronous Specifications
I It is decidable whether a synchronous specification can be

implemented.
I What about more powerful specifications?

Theorem (Filiot/W.). It is undecidable whether a given rational
relation can be implemented.

Theorem (Filiot/W.). It is undecidable whether a continuous,
computable, resp., sequential function can be synthesized from a
given rational relation.

I Finite word setting: Undecidable whether a sequential
function can be synthesized. (Carayol/Löding’14)

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 19 of 24

Undecidability Proof (similar to finite word setting)

Reduction from Post’s Correspondence Problem
I A PCP instance u1, . . . , un and v1, . . . , vn.
I Rational relation with domain {1, . . . , n}∗{a, b}ω and pairs

i1 · · · imα
{
7→ ui1 · · ·uimβ if α contains ∞ many a
67→ vi1 · · · vimβ otherwise

with i1 · · · im ∈ {1, . . . , n}∗ and α, β ∈ {a, b}ω.

PCP instance has no solution
I i1 · · · imα 7→ ui1 · · ·uimα is an implementation
I always ui1 · · ·uim 6= vi1 · · · vim

PCP instance has a solution
I no implementation exists
I never known whether the input sequence has ∞ many a

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 20 of 24

Work in Progress: Deterministic Rational Relations
Class between synchronous and rational relations.
Recognized by special kind of transducers
I state set is partitioned into input and output states
I transition function: Qi × Σ→ Q ∪ Qo × Γ→ Q

Example.

1 0

0

0

a/ε

b/ε

#/ε

a/ε ε/a

b/ε

ε/b

I recognizes f : u#α 7→ α, u ∈ {a, b}∗, α ∈ {a, b}ω
I f is not synchronous
Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 21 of 24

Work in Progress: Deterministic Rational Relations

Almost Sure Theorem. It is decidable whether a continuous
function can be synthesized from a given deterministic rational
relation.

Almost Sure Theorem. Such a synthesized function is
computable by a deterministic two-way transducer.

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 22 of 24

Open question
Is it decidable whether a synchronous relation with partial
domain is implementable using only finite memory?

Example.
I Specification: (a∗b · · · , b · · ·) (a∗c · · · , c · · ·)
I Specification is implementable, e.g., by a finite-memory

machine (sequential transducer) that computes the function

a∗b · · · 7→ bω a∗c · · · 7→ cω

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 23 of 24

Summary

Spec
Impl Mealy sequential computable

machine transducer
synchronous
w/ total domain

EXPTime-c1 EXPTime-c2 EXPTime-c2

synchronous
w/ partial domain

EXPTime-c1 open EXPTime-c2

det. rational open open EXPTime-c
rational undecidable undecidable undecidable

1 non-deterministic specification 2 deterministic specification

Synthesizing Computable Functions from Synchronous Specifications – Sarah Winter 24 of 24

