Decision Problems for Origin-Close Top-Down Tree Transducers

Sarah Winter

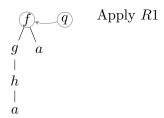
Université libre de Bruxelles (ULB), Belgium

August 26, 2021 MFCS, online

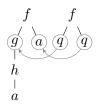
$$\begin{array}{rcccc} R1 & q(f(x_1, x_2)) & \rightarrow & f(q(x_1), q(x_2)) \\ R2 & q(g(x_1)) & \rightarrow & q(x_1) \\ R3 & q(h(x_1)) & \rightarrow & q(h(x_1)) \\ R4 & q(a) & \rightarrow & b \end{array}$$

$$\begin{array}{c}f\\/\setminus\\g&a\\|\\h\\|\\a\end{array}$$

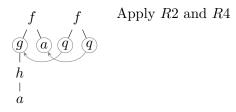
$$\begin{array}{rcl} R1 & q(f(x_1, x_2)) & \rightarrow & f(q(x_1), q(x_2)) \\ R2 & q(g(x_1)) & \rightarrow & q(x_1) \\ R3 & q(h(x_1)) & \rightarrow & q(h(x_1)) \\ R4 & q(a) & \rightarrow & b \end{array}$$



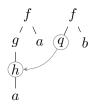
$$\begin{array}{rcl} R1 & q(f(x_1, x_2)) & \rightarrow & f(q(x_1), q(x_2)) \\ R2 & q(g(x_1)) & \rightarrow & q(x_1) \\ R3 & q(h(x_1)) & \rightarrow & q(h(x_1)) \\ R4 & q(a) & \rightarrow & b \end{array}$$



$$\begin{array}{rcccc} R1 & q(f(x_1, x_2)) & \rightarrow & f(q(x_1), q(x_2)) \\ R2 & q(g(x_1)) & \rightarrow & q(x_1) \\ R3 & q(h(x_1)) & \rightarrow & q(h(x_1)) \\ R4 & q(a) & \rightarrow & b \end{array}$$



$$\begin{array}{rcccc} R1 & q(f(x_1, x_2)) & \to & f(q(x_1), q(x_2)) \\ R2 & q(g(x_1)) & \to & q(x_1) \\ R3 & q(h(x_1)) & \to & q(h(x_1)) \\ R4 & q(a) & \to & b \end{array}$$

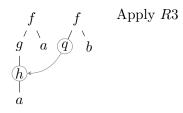


$$R1 \quad q(f(x_1, x_2)) \quad \rightarrow \quad f(q(x_1), q(x_2))$$

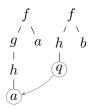
$$R2 \quad q(g(x_1)) \quad \rightarrow \quad q(x_1)$$

$$R3 \quad q(h(x_1)) \quad \rightarrow \quad q(h(x_1))$$

$$R4 \quad q(a) \quad \rightarrow \quad b$$



$$\begin{array}{rccc} R1 & q(f(x_1, x_2)) & \rightarrow & f(q(x_1), q(x_2)) \\ R2 & q(g(x_1)) & \rightarrow & q(x_1) \\ R3 & q(h(x_1)) & \rightarrow & q(h(x_1)) \\ R4 & q(a) & \rightarrow & b \end{array}$$

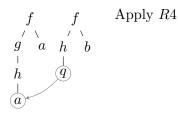


$$R1 \quad q(f(x_1, x_2)) \quad \rightarrow \quad f(q(x_1), q(x_2))$$

$$R2 \quad q(g(x_1)) \quad \rightarrow \quad q(x_1)$$

$$R3 \quad q(h(x_1)) \quad \rightarrow \quad q(h(x_1))$$

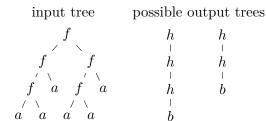
$$R4 \quad q(a) \quad \rightarrow \quad b$$



$$\begin{array}{rcl} R1 & q(f(x_1, x_2)) & \rightarrow & f(q(x_1), q(x_2)) \\ R2 & q(g(x_1)) & \rightarrow & q(x_1) \\ R3 & q(h(x_1)) & \rightarrow & q(h(x_1)) \\ R4 & q(a) & \rightarrow & b \end{array}$$

$$\begin{array}{cccc}f&f\\g'&a&h\\b\\h&b\\a\end{array}$$

$$\begin{array}{rcl} q(f(x_1, x_2)) & \to & h(q(x_1)) \\ q(f(x_1, x_2)) & \to & h(q(x_2)) \\ q(a) & \to & b \end{array}$$



Motivation

• . . .

Tree transducers are used in many fields

- ▶ Natural language processing
- ▶ Syntax directed translations
- ▶ Databases (XML)

Theorem ([Ési80]). The inclusion and equivalence problem are undecidable for top-down tree transducers.

Already the case for word transducers.

Theorem. The synthesis problem is undecidable for top-down tree transducers.

Already the case for word transducers [CL14].

Theorem. The synthesis problem is undecidable for top-down tree transducers.

Already the case for word transducers [CL14].

one input is in relation with several outputs

top-down tree transducer

unique output for each input selected in a **deterministic** way

deterministic top-down tree transducer **Theorem.** The synthesis problem is undecidable for top-down tree transducers.

Already the case for word transducers [CL14].

Specification -----> Implementation

one input is in relation with several outputs

top-down tree transducer

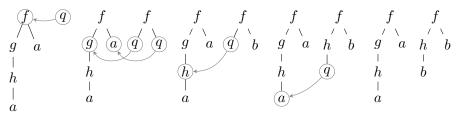
unique output for each input selected in a **deterministic** way

deterministic top-down tree transducer

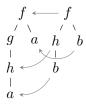
Deterministic TDTT: Rules have a unique right-hand side.

Origin Mapping I

Example. Top-down tree transducer transduction



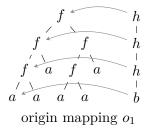
Resulting origin mapping

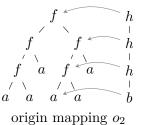


Origin Mapping II

Example.

$$\begin{array}{rcl} q(f(x_1, x_2)) & \to & h(q(x_1)) \\ q(f(x_1, x_2)) & \to & h(q(x_2)) \\ q(a) & \to & b \end{array}$$





► TDTT \mathcal{T} (with origin semantics) defines a set $R_o(\mathcal{T})$ of triples $(\underbrace{t}_{input \text{ tree output tree}}, \underbrace{s}_{origin \text{ mapping}}, \underbrace{o: \operatorname{dom}_s \to \operatorname{dom}_t}_{origin \text{ mapping}})$

 TDTT T (with origin semantics) defines a set R_o(T) of triples (<u>t</u>, <u>s</u>, <u>o:dom_s → dom_t)</u> input tree output tree <u>origin mapping</u>
 e.g., TDTT T₁ is origin equivalent to TDTT T₂ iff R_o(T₁) = R_o(T₂)

► TDTT \$\mathcal{T}\$ (with origin semantics) defines a set \$R_o(\mathcal{T})\$ of triples \$(\$\begin{smallmatrix}t\$, \$\begin{smallmatrix}s\$, \$\begin{smallmatrix}o: dom_s → dom_t\$)\$ input tree output tree \$\overline{origin mapping}\$
 ► e.g., TDTT \$\mathcal{T}_1\$ is origin equivalent to TDTT \$\mathcal{T}_2\$ iff \$R_o(\mathcal{T}_1) = R_o(\mathcal{T}_2)\$

Theorem ([FMRT18]). The origin inclusion and origin equivalence problem are decidable for top-down tree transducers.

► TDTT \$\mathcal{T}\$ (with origin semantics) defines a set \$R_o(\mathcal{T})\$ of triples \$(\$\begin{smallmatrix}t\$, \$\begin{smallmatrix}s\$, \$\begin{smallmatrix}o: dom_s → dom_t\$)\$ input tree output tree \$\overline{origin mapping}\$
 ► e.g., TDTT \$\mathcal{T}_1\$ is origin equivalent to TDTT \$\mathcal{T}_2\$ iff \$R_o(\mathcal{T}_1) = R_o(\mathcal{T}_2)\$

Theorem ([FMRT18]). The origin inclusion and origin equivalence problem are decidable for top-down tree transducers.

Also shown for other tree transducer models in [FMRT18].

► TDTT \$\mathcal{T}\$ (with origin semantics) defines a set \$R_o(\mathcal{T})\$ of triples \$(\$\begin{smallmatrix}t\$, \$\begin{smallmatrix}s\$, \$\begin{smallmatrix}o: dom_s → dom_t\$)\$ input tree output tree \$\overline{origin mapping}\$
 ► e.g., TDTT \$\mathcal{T}_1\$ is origin equivalent to TDTT \$\mathcal{T}_2\$ iff \$R_o(\mathcal{T}_1) = R_o(\mathcal{T}_2)\$

Theorem ([FMRT18]). The origin inclusion and origin equivalence problem are decidable for top-down tree transducers.

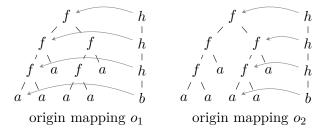
Also shown for other tree transducer models in [FMRT18].

Origin semantics is rather rigid.

Distance between two nodes Length of the shortest path.

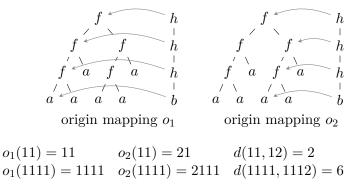
Distance between two nodes Length of the shortest path.

Example. Input tree t, output tree s



Distance between two nodes Length of the shortest path.

Example. Input tree t, output tree s



Distance between two nodes Length of the shortest path.

Example. Input tree t, output tree s

a aa a a origin mapping o_1 origin mapping o_2 $o_1(11) = 11$ $o_2(11) = 21$ d(11, 12) = 2 $o_1(1111) = 1111$ $o_2(1111) = 2111$ d(1111, 1112) = 6Biggest distance between origins is 6. $(t, s, o_1) \neq (t, s, o_2)$, but $(t, s, o_1) =_k (t, s, o_2)$ for all $k \ge 6$.

▶ Input tree t, output tree s, origin mapping $o: \operatorname{dom}_s \to \operatorname{dom}_t$

Input tree t, output tree s, origin mapping o: dom_s → dom_t
Given k ≥ 0, (t, s, o) ∈_k R_o(T) for a TDTT T if there is
1. (t, s, o') ∈ R_o(T), and
2. d(o(i), o'(i)) ≤ k for all i ∈ dom_s

- Input tree t, output tree s, origin mapping o: dom_s → dom_t
 Given k ≥ 0, (t, s, o) ∈_k R_o(T) for a TDTT T if there is
 1. (t, s, o') ∈ R_o(T), and
 2. d(o(i), o'(i)) ≤ k for all i ∈ dom_s
- ▶ e.g., Given TDTTs \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_1 is k-origin included in \mathcal{T}_2 iff $(t, s, o) \in_k R_o(\mathcal{T}_2)$ for all $(t, s, o) \in R_o(\mathcal{T}_1)$

- Input tree t, output tree s, origin mapping o: dom_s → dom_t
 Given k ≥ 0, (t, s, o) ∈_k R_o(T) for a TDTT T if there is
 1. (t, s, o') ∈ R_o(T), and
 2. d(o(i), o'(i)) ≤ k for all i ∈ dom_s
- ▶ e.g., Given TDTTs \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_1 is k-origin included in \mathcal{T}_2 iff $(t, s, o) \in_k R_o(\mathcal{T}_2)$ for all $(t, s, o) \in R_o(\mathcal{T}_1)$

Theorem. Given $k \ge 0$, the k-origin inclusion, k-origin equivalence, and k-origin synthesis problem are decidable for top-down tree transducers.

Proof Idea

Theorem. Given $k \ge 0$, the k-origin inclusion, k-origin equivalence, and k-origin synthesis problem are decidable for top-down tree transducers.

• Given $k \ge 0$ and a TDTT \mathcal{T} , the set $\{(t, s, o) \in_k R_o(\mathcal{T})\}$ has a representation as an ω -regular tree language.

Proof Idea

Theorem. Given $k \ge 0$, the k-origin inclusion, k-origin equivalence, and k-origin synthesis problem are decidable for top-down tree transducers.

- Given $k \ge 0$ and a TDTT \mathcal{T} , the set $\{(t, s, o) \in_k R_o(\mathcal{T})\}$ has a representation as an ω -regular tree language.
- Using closure properties of ω -regular tree languages, we arrive at our results.

- ▶ Input alphabet: f(,), a Output alphabet: h(), b
- $\blacktriangleright \text{ TDTT } \mathcal{T} \text{ (rhs max height is 1)}$
- $\blacktriangleright k = 0 \text{ (origin equivalence)}$

- ▶ Input alphabet: f(,), a Output alphabet: h(), b
- ▶ TDTT \mathcal{T} (rhs max height is 1)
- $\blacktriangleright k = 0 \text{ (origin equivalence)}$

Infinite tree $H_{\mathcal{T},0}$

▶ Input alphabet: f(,), a Output alphabet: h(), b

ε

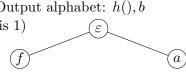
TDTT \mathcal{T} (rhs max height is 1)

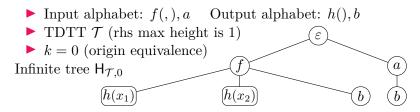
 $\blacktriangleright k = 0 \text{ (origin equivalence)}$

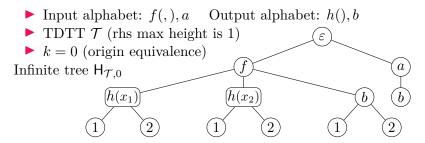
Infinite tree $H_{\mathcal{T},0}$

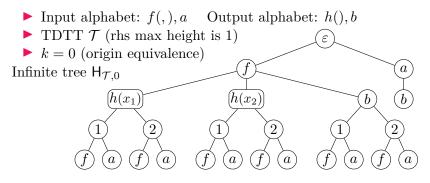
- ▶ Input alphabet: f(,), a Output alphabet: h(), b
- ▶ TDTT \mathcal{T} (rhs max height is 1)
- $\blacktriangleright k = 0 \text{ (origin equivalence)}$

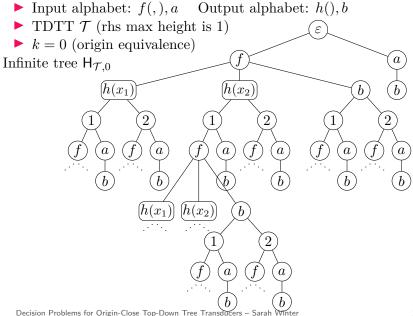
Infinite tree $H_{\mathcal{T},0}$

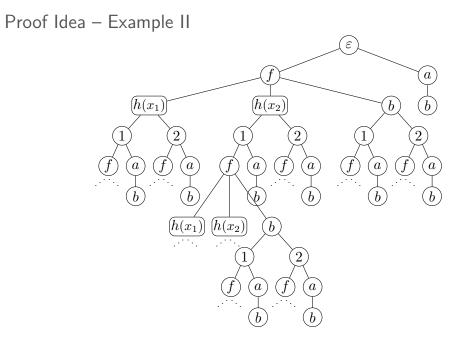


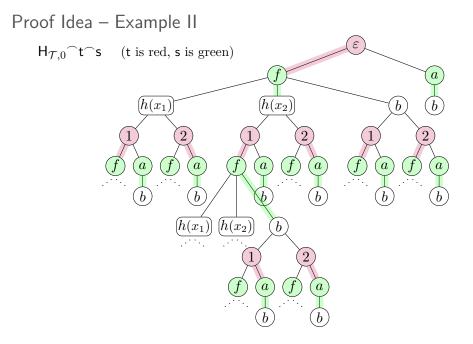


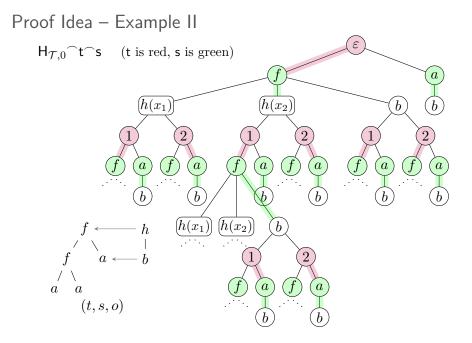






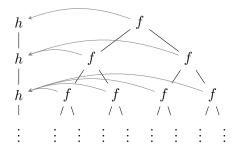






Difficulty: Non-Linear Transductions

Example. $q(h(x_1)) \to f(q(x_1), q(x_1))$ and $q(a) \to b$



Number of output nodes that depend on the same input node is unbounded.

Arnaud Carayol and Christof Löding. Uniformization in Automata Theory.

In Proceedings of the 14th Congress of Logic, Methodology and Philosophy of Science Nancy, July 19-26, 2011, pages 153–178. London: College Publications, 2014.

Zoltán Ésik.

Decidability results concerning tree transducers i.

Acta Cybernetica, 5(1):1–20, 1980.

 Emmanuel Filiot, Sebastian Maneth, Pierre-Alain Reynier, and Jean-Marc Talbot.
 Decision problems of tree transducers with origin.
 Inf. Comput., 261:311–335, 2018.