Synthesis from Weighted Specifications over Finite Words

Synthesis Problem

	synthesize Specification		
one input is in relation with serveral outputs given by deterministic weighted synchronous automata	selects unique output for each input same domain as specification realized by sequential synchronous transducers		
Threshold Synthesis Problem	Example: Sum-specification		
Given a specification <i>S</i> , a threshold $\nu \in \mathbb{Q}$, and $\triangleright \in \{>, \geq\}$, the implementation <i>f</i> has to satisfy $S(u \otimes f(u)) \triangleright \nu$ for all $u \in \text{dom}(S)$.	$(\begin{array}{c} (b) & & 6 \\ (d) & & 6 \\ (d) & (d) & & 1 \\ (d) & (d) & (d) & & 2 \\ (d) & (d) & (d) & & 2 \\ (d) & (d) & (d) & & 1 \\ (d) & (d) & & 1 \\ \end{array}$		
Best-value Synthsis Problem	$Sum(\begin{pmatrix} a & a & b \\ c & d & d \end{pmatrix}) = -1 + 1 + 2 = 2, S(aab \otimes cdd) = 2$ $Sum(\begin{pmatrix} a & a & b \\ c & c & d \end{pmatrix}) = -1 - 1 + 6 = 4, S(aab \otimes ccd) = 4$		

Given a specification S, the implementation f has to satisfy

 $S(u \otimes f(u)) = \text{bestVal}_S(u),$ where $\text{bestVal}_S(u) = \sup\{S(u \otimes v) \mid u \otimes v \in S\}$ for all $u \in \text{dom}(S)$.

Approximate Synthesis Problem

Given a specification *S*, a threshold $v \in \mathbb{Q}$, and $\triangleleft \in \{<, \leq\}$, the implementation *f* has to satisfy bestVal_S(u) - S(u \otimes f(u)) \triangleleft v for all $u \in \text{dom}(S)$.

Proof techniques: Two-player games

- Imperfect information energy games to obtain results on approximate synthesis for Avg-specs.
- Mean-payoff and discounted sum games for other results.

Example: Threshold

A value- \geq 3-implementation

 $O_{a/d} = S(b \otimes d) = 6, \quad S(a^i b \otimes d^{i+1}) = i \cdot 1 + 2$

Example: Best-value & approximate

No best-value implementation exists, but a \leq 2-approximate implementation.

$$b/d \downarrow a/c \downarrow b/d$$

 $a/c \downarrow b/d$
 a/d

$$S(b \otimes d) = 6$$
 bestVal $(b) = 6$

$$S(ab \otimes cd) = 5$$
 bestVal $(ab) = 5$

$$S(aab \otimes cdd) = 2$$
 bestVal $(aab) = 4$

$$S(aaab \otimes cddd) = 3$$
 bestVal $(aaab) = 5$

$$S(aaaab \otimes cdddd) = 4 \text{ bestVal}(aaaab) = 6$$

Specification	Sum-	Avg-	Dsum-
Problem	automata	automata	automata
strict threshold	$NP \cap coNP$	$NP \cap coNP$	NP [†]
non-strict threshold	$NP \cap coNP$	$NP \cap coNP$	$NP \cap coNP$
best-value	Ptime [AKL10]	Ptime [AKL10]	$NP \cap coNP^{\dagger}$
strict approximate	EXPtime-c [JFL+17]	decidable [†]	NEXPtime for discount factor 1/n
non-strict approximate	EXPtime-c [JFL ⁺ 17]	decidable [†]	EXPtime for discount factor 1/n

⁺ most involved results

Emmanuel Filiot* Christof Löding** <u>Sarah Winter</u>*

* Université libre de Bruxelles, Belgium ** RWTH Aachen University, Germany