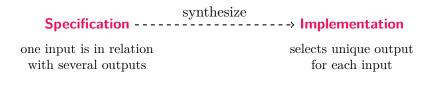
Synthesis from Weighted Specifications with Partial Domains over Finite Words

Sarah Winter joint work with Emmanuel Filiot and Christof Löding

Université libre de Bruxelles, Belgium

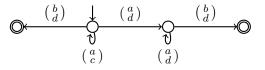
December, 2020 FSTTCS Conference Synthesis



Boolean Specifications

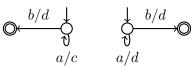
A (Boolean) **specification** is given by a synchronous deterministic automaton.

Example.



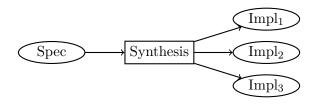
An **implementation** is given by a synchronous sequential transducer.

Example.

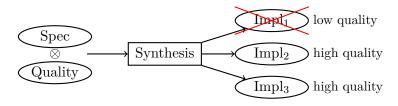


Which one is better?

Quality in Synthesis



A quality measure is a function $Q: (\Sigma \times \Gamma)^* \to \mathbb{Q}$.



How to Define High Quality?

▶ All executions have a lower bounded quality:

 $\forall i_1 o_1 i_2 o_2 \dots \in [\text{Impl}] \colon Q(\substack{i_1 & i_2 & \dots \\ o_1 & o_2 & \dots}) \ge c$

► All executions are quality optimal: $\forall i_1 o_1 i_2 o_2 \dots \in [\text{Impl}] \colon Q\begin{pmatrix} i_1 & i_2 & \dots \\ o_1 & o_2 & \dots \end{pmatrix} = \sup_{o'_1 o'_2 \dots} Q\begin{pmatrix} i_1 & i_2 & \dots \\ o'_1 & o'_2 & \dots \end{pmatrix}$

► All executions are almost quality optimal: $\forall i_1 o_1 i_2 o_2 \dots \in [\text{Impl}]: \sup_{o'_1 o'_2 \dots} Q\left(\begin{smallmatrix} i_1 & i_2 & \dots \\ o'_1 & o'_2 & \dots \end{smallmatrix}\right) - Q\left(\begin{smallmatrix} i_1 & i_2 & \dots \\ o_1 & o'_2 & \dots \end{smallmatrix}\right) \leq c$

Synthesis from Weighted Specifications - Sarah Winter

FSTTCS 2020

Weighted Specifications (:= Boolean Spec \otimes Quality)

A weighted specification is a function val: $(\Sigma \times \Gamma)^* \to \mathbb{Q} \cup -\infty$ given by a synchronous deterministic weighted automaton.

Example.

The value val of a pair depends on the used payoff function.

Example. Sum $(\begin{pmatrix} a & a & b \\ c & d & d \end{pmatrix}) = -1 + 1 + 2 = 2$, Sum $(aab \otimes cdd) = 2$

The specification **domain** is $\{u \mid \mathsf{val}(u \otimes v) \in \mathbb{Q}\}$. An input is **valid** if it is from the domain.

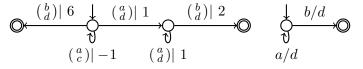
Example. Specification domain $= a^*b$

Synthesis from Weighted Specifications - Sarah Winter

Threshold Synthesis

The threshold synthesis problem asks, given $c \in \mathbb{Q}$, and $\triangleright \in \{>, \geq\}$, that the implem. f satisfies for all valid inputs u: $\operatorname{val}(u \otimes f(u)) \triangleright c$

Example. Sum-specification and Implementation



Implementation ensures value of at least 3 for all pairs. $\mathsf{Sum}(b \otimes d) = 6$, $\mathsf{Sum}(a^i b \otimes d^{i+1}) = i \cdot 1 + 2$

Note: Implementation can do anything on invalid inputs.

Threshold Synthesis

Spec	Sum-	Avg-	Dsum-
Problem	automata	automata	automata
strict threshold	$NP \cap CONP$	$NP \cap CONP$	NP
non-strict threshold	$NP \cap CONP$	$NP \cap CONP$	$NP \cap CONP$

How to solve? See it as a game problem.

We introduce a new type of game.

Critical prefix games

Synthesis from Weighted Specifications - Sarah Winter

FSTTCS 2020

Critical Prefix Games

Tailored to handle

- ▶ finite inputs
- ▶ partial specification domains

A critical prefix game is an infinite-duration two-player turn-based weighted game with critical vertices.

- ▶ When a play is in a critical vertex, quantitative constraints on the prefix are checked,
 - ▶ if fulfilled, the play continues, otherwise Adam wins.
- ▶ Nothing checked for non-critical vertices.

Critical Prefix Games and Threshold Synthesis

Threshold synthesis reduces to critical prefix games with threshold conditions.

These games are decidable for sum, average, and discounted-sum payoffs.

- Sum and average critical prefix games reduce to mean-payoff games.
- Discounted-sum critical prefix games reduce to discounted-sum games.

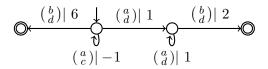
Best-value Synthesis

The **best-value synthesis problem** asks that the implementation f satisfies for all valid inputs u:

$$\mathsf{val}(u \otimes f(u)) = \mathsf{bestVal}(u) := \sup_v \mathsf{val}(u \otimes v),$$

that is, the maximal value achievable for input u.

Example. Sum-specification



No best-value implementation exists.

$$bestSum(b) = 6$$
$$bestSum(ab) = 5$$
$$bestSum(aab) = 4$$
$$bestSum(aaab) = 5$$
$$bestSum(aaaab) = 6$$

Best-value Synthesis

Spec	Sum-	Avg-	Dsum-
Problem	automata	automata	automata
best-value	PTIME [AKL10]	PTIME [AKL10]	$\mathrm{NP}\cap\mathrm{coNP}$

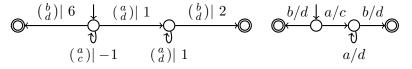
Proof Techniques

- Sum: reduces to determinization by pruning of Sum-automata
- ► Avg: reduces to Sum
- **D**sum: reduces to a discounted-sum game

Approximate Synthesis

The **approximate synthesis problem** asks, given $c \in \mathbb{Q}$, and $\triangleleft \in \{<, \leq\}$, that the implem. f satisfies for all valid inputs u: bestVal $(u) - val(u \otimes f(u)) \triangleleft c$

Example. Sum-specification and Implementation



Implementation ensures value of at most 2 less the best value.

$$\begin{array}{ll} \mathsf{Sum}(b\otimes d)=6 & \mathsf{bestSum}(b)=6\\ \mathsf{Sum}(ab\otimes cd)=5 & \mathsf{bestSum}(ab)=5\\ \mathsf{Sum}(a^ib\otimes c^id)=i & \mathsf{bestSum}(a^ib)=i+2, & \mathrm{for}\ i\geq 2 \end{array}$$

Synthesis from Weighted Specifications - Sarah Winter

Approximate Synthesis

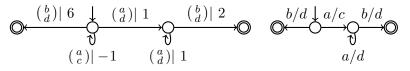
Spec	Sum-	Avg-	Dsum-
Problem	automata	automata	automata
strict	EXPTIME-C	decidable	NEXPTIME for
approximate	$[FJL^+17]$	EXPTIME-hard	discount $1/n$
non-strict	EXPTIME-C	decidable	EXPTIME for
approximate	$[FJL^+17]$	EXPTIME-hard	discount $1/n$

Proof Techniques

- ▶ Sum: reduces to regret determinization of Sum-automata
- Dsum: open in general, for integer discounts reduces to discounted-sum games
- Avg: best-value synthesis reduces to Sum, no longer the case for approximate synthesis

 $\mathsf{bestAvg}(u) - \mathsf{Avg}(u \otimes v) = 0 \quad \Leftrightarrow \quad \mathsf{bestSum}(u) - \mathsf{Sum}(u \otimes v) = 0$

Example. Specification and Implementation



 $\begin{array}{ll} \mathsf{Sum}(a^ib\otimes c^id)=i & \mathsf{best}\mathsf{Sum}(a^ib)=i+2, & \text{for } i\geq 2\\ \mathsf{Avg}(a^ib\otimes c^id)=\frac{i}{2i+2} & \mathsf{best}\mathsf{Avg}(a^ib)=\frac{i+2}{2i+2}, & \text{for } i\geq 2 \end{array}$

Reduces to (a special type of) **critical prefix games with imperfect information** which reduce to imperfect information games with fixed initial credit.

Synthesis from Weighted Specifications - Sarah Winter

FSTTCS 2020

 $\Leftrightarrow \quad \mathsf{bestSum}(u) - \mathsf{Sum}(u \otimes v) \triangleleft c \cdot n$

Results

Spec	Sum-	Avg-	Dsum-
Problem	automata	automata	automata
strict	$NP \cap CONP$	$NP \cap CONP$	NP
threshold			
non-strict	$NP \cap CONP$	$NP \cap CONP$	$NP \cap CONP$
threshold			
best-value	PTIME	PTIME [AKL10]	$NP \cap CONP$
	[AKL10]		
strict	EXPTIME-C	decidable	NEXPTIME for
approximate	$[FJL^+17]$	EXPTIME-hard	discount $1/n$
non-strict	EXPTIME-C	decidable	EXPTIME for
approximate	$[FJL^+17]$	EXPTIME-hard	discount $1/n$

Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online algorithms with weighted automata.

ACM Trans. Algorithms, 6(2):28:1–28:36, 2010.

 Emmanuel Filiot, Ismaël Jecker, Nathan Lhote, Guillermo A. Pérez, and Jean-François Raskin.
On delay and regret determinization of max-plus automata. In *LICS*, pages 1–12. IEEE Computer Society, 2017.