Synthesis from Weighted Specifications with Partial Domains over Finite Words

Sarah Winter joint work with Emmanuel Filiot and Christof Löding

Université libre de Bruxelles, Belgium

December 17th, 2020 FSTTCS Conference, online Synthesis

Specification ------> Implementation

one input is in relation with several outputs

given by a deterministic synchronous weighted automaton

$$\bigcirc \begin{array}{c} \begin{pmatrix} b \\ d \end{pmatrix} \mid 6 & \downarrow & \begin{pmatrix} a \\ d \end{pmatrix} \mid 1 & \begin{pmatrix} b \\ d \end{pmatrix} \mid 2 \\ & & & & \\ \hline \begin{pmatrix} a \\ c \end{pmatrix} \mid -1 & \begin{pmatrix} a \\ d \end{pmatrix} \mid 1 \\ & & & \\ \end{array} \bigcirc \begin{array}{c} \begin{pmatrix} b \\ d \end{pmatrix} \mid 2 \\ & & & \\ \hline \begin{pmatrix} a \\ d \end{pmatrix} \mid 1 \\ & & & \\ \end{array} \\ \bigcirc \begin{array}{c} \begin{pmatrix} a \\ d \end{pmatrix} \mid 1 \\ & & \\ \hline \end{array}$$

selects unique output for each input

realized by a sequential synchronous transducer

b/d

What are High Quality Implementations?

An implementation is a set of valid executions.

Possible quality constraints

- ▶ All executions have a lower bounded quality.
- ▶ All executions are quality optimal.
- ▶ All executions are almost quality optimal.

Threshold Synthesis

The threshold synthesis problem asks, given $c \in \mathbb{Q}$, and $\triangleright \in \{>, \geq\}$, that the implem. f satisfies for all valid inputs u: $\operatorname{val}(u \otimes f(u)) \triangleright c$

Example. Sum-specification and Implementation

Implementation ensures value of at least 3 for all pairs. $\mathsf{Sum}(b \otimes d) = 6$, $\mathsf{Sum}(a^i b \otimes d^{i+1}) = i \cdot 1 + 2$

Synthesis from Weighted Specifications - Sarah Winter

Best-value Synthesis

The **best-value synthesis problem** asks that the implementation f satisfies for all valid inputs u:

$$\mathsf{val}(u \otimes f(u)) = \mathsf{bestVal}(u) := \sup_v \mathsf{val}(u \otimes v),$$

that is, the maximal value achievable for input u.

Example. Sum-specification

No best-value implementation exists.

bestSum(b) = 6bestSum(ab) = 5bestSum(aab) = 4bestSum(aaab) = 5bestSum(aaaab) = 6

Approximate Synthesis

The **approximate synthesis problem** asks, given $c \in \mathbb{Q}$, and $\triangleleft \in \{<, \leq\}$, that the implem. f satisfies for all valid inputs u: $\mathsf{bestVal}(u) - \mathsf{val}(u \otimes f(u)) \triangleleft c$

Example. Sum-specification and Implementation

Implementation ensures value of at most 2 less the best value.

$$\begin{array}{ll} \mathsf{Sum}(b\otimes d)=6 & \mathsf{bestSum}(b)=6\\ \mathsf{Sum}(ab\otimes cd)=5 & \mathsf{bestSum}(ab)=5\\ \mathsf{Sum}(a^ib\otimes c^id)=i & \mathsf{bestSum}(a^ib)=i+2, & \mathrm{for}\ i\geq 2 \end{array}$$

Synthesis from Weighted Specifications - Sarah Winter

Results

Spec	Sum-	Avg-	Dsum-
Problem	automata	automata	automata
strict	$NP \cap CONP$	$NP \cap CONP$	NP
threshold			
non-strict	$NP \cap CONP$	$NP \cap CONP$	$NP \cap CONP$
threshold			
best-value	Ptime	PTIME [AKL10]	$NP \cap CONP$
	[AKL10]		
strict	EXPTIME-C	decidable	NEXPTIME for
approximate	$[FJL^+17]$	EXPTIME-hard	discount $1/n$
non-strict	EXPTIME-C	decidable	EXPTIME for
approximate	$[FJL^+17]$	EXPTIME-hard	discount $1/n$

Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online algorithms with weighted automata.

ACM Trans. Algorithms, 6(2):28:1–28:36, 2010.

 Emmanuel Filiot, Ismaël Jecker, Nathan Lhote, Guillermo A. Pérez, and Jean-François Raskin.
 On delay and regret determinization of max-plus automata. In *LICS*, pages 1–12. IEEE Computer Society, 2017.